| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upeu3 | Structured version Visualization version GIF version | ||
| Description: The universal pair 〈𝑋, 𝑀〉 from object 𝑊 to functor 〈𝐹, 𝐺〉 is essentially unique (strong form) if it exists. (Contributed by Zhi Wang, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| upeu3.i | ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) |
| upeu3.o | ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) |
| upeu3.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) |
| upeu3.y | ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑁) |
| Ref | Expression |
|---|---|
| upeu3 | ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 2 | eqid 2734 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 3 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 4 | eqid 2734 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 5 | eqid 2734 | . . 3 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 6 | upeu3.x | . . . 4 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) | |
| 7 | 6 | uprcl2 48896 | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 8 | 6, 1 | uprcl4 48898 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 9 | upeu3.y | . . . 4 ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑁) | |
| 10 | 9, 1 | uprcl4 48898 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 11 | 6, 2 | uprcl3 48897 | . . 3 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
| 12 | 6, 4 | uprcl5 48899 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑋))) |
| 13 | 1, 3, 4, 5, 6 | isup2 48900 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀)) |
| 14 | 9, 4 | uprcl5 48899 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑌))) |
| 15 | 1, 3, 4, 5, 9 | isup2 48900 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑦))𝑁)) |
| 16 | 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15 | upeu 48883 | . 2 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀)) |
| 17 | upeu3.i | . . . 4 ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) | |
| 18 | 17 | oveqd 7431 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋(Iso‘𝐷)𝑌)) |
| 19 | upeu3.o | . . . . 5 ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) | |
| 20 | 19 | oveqd 7431 | . . . 4 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀)) |
| 21 | 20 | eqeq2d 2745 | . . 3 ⊢ (𝜑 → (𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀))) |
| 22 | 18, 21 | reueqbidv 3407 | . 2 ⊢ (𝜑 → (∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) ↔ ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀))) |
| 23 | 16, 22 | mpbird 257 | 1 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∃!wreu 3362 〈cop 4614 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 Hom chom 17285 compcco 17286 Isociso 17762 UPcup 48885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-supp 8169 df-map 8851 df-ixp 8921 df-cat 17683 df-cid 17684 df-sect 17763 df-inv 17764 df-iso 17765 df-cic 17812 df-func 17875 df-up 48886 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |