![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upeu3 | Structured version Visualization version GIF version |
Description: The universal pair 〈𝑋, 𝑀〉 from object 𝑊 to functor 〈𝐹, 𝐺〉 is essentially unique (strong form) if it exists. (Contributed by Zhi Wang, 24-Sep-2025.) |
Ref | Expression |
---|---|
upeu3.i | ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) |
upeu3.o | ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) |
upeu3.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) |
upeu3.y | ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑁) |
Ref | Expression |
---|---|
upeu3 | ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
2 | eqid 2737 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
3 | eqid 2737 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
4 | eqid 2737 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
5 | eqid 2737 | . . 3 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
6 | upeu3.x | . . . 4 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) | |
7 | 6 | uprcl2 48861 | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
8 | 6, 1 | uprcl4 48863 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
9 | upeu3.y | . . . 4 ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑁) | |
10 | 9, 1 | uprcl4 48863 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
11 | 6, 2 | uprcl3 48862 | . . 3 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
12 | 6, 4 | uprcl5 48864 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑋))) |
13 | 1, 3, 4, 5, 6 | isup2 48865 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀)) |
14 | 9, 4 | uprcl5 48864 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑌))) |
15 | 1, 3, 4, 5, 9 | isup2 48865 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑦))𝑁)) |
16 | 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15 | upeu 48849 | . 2 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀)) |
17 | upeu3.i | . . . 4 ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) | |
18 | 17 | oveqd 7455 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋(Iso‘𝐷)𝑌)) |
19 | upeu3.o | . . . . 5 ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) | |
20 | 19 | oveqd 7455 | . . . 4 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀)) |
21 | 20 | eqeq2d 2748 | . . 3 ⊢ (𝜑 → (𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀))) |
22 | 18, 21 | reueqbidv 3423 | . 2 ⊢ (𝜑 → (∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) ↔ ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀))) |
23 | 16, 22 | mpbird 257 | 1 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃!wreu 3378 〈cop 4640 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Hom chom 17318 compcco 17319 Isociso 17803 UPcup 48851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-supp 8194 df-map 8876 df-ixp 8946 df-cat 17722 df-cid 17723 df-sect 17804 df-inv 17805 df-iso 17806 df-cic 17853 df-func 17918 df-up 48852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |