| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > upeu3 | Structured version Visualization version GIF version | ||
| Description: The universal pair 〈𝑋, 𝑀〉 from object 𝑊 to functor 〈𝐹, 𝐺〉 is essentially unique (strong form) if it exists. (Contributed by Zhi Wang, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| upeu3.i | ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) |
| upeu3.o | ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) |
| upeu3.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) |
| upeu3.y | ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑁) |
| Ref | Expression |
|---|---|
| upeu3 | ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 3 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 4 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 5 | eqid 2729 | . . 3 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 6 | upeu3.x | . . . 4 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) | |
| 7 | 6 | uprcl2 49178 | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 8 | 6, 1 | uprcl4 49180 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 9 | upeu3.y | . . . 4 ⊢ (𝜑 → 𝑌(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑁) | |
| 10 | 9, 1 | uprcl4 49180 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 11 | 6, 2 | uprcl3 49179 | . . 3 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
| 12 | 6, 4 | uprcl5 49181 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑋))) |
| 13 | 1, 3, 4, 5, 6 | isup2 49183 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀)) |
| 14 | 9, 4 | uprcl5 49181 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑌))) |
| 15 | 1, 3, 4, 5, 9 | isup2 49183 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑌(Hom ‘𝐷)𝑦)𝑔 = (((𝑌𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑦))𝑁)) |
| 16 | 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15 | upeu 49160 | . 2 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀)) |
| 17 | upeu3.i | . . . 4 ⊢ (𝜑 → 𝐼 = (Iso‘𝐷)) | |
| 18 | 17 | oveqd 7404 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = (𝑋(Iso‘𝐷)𝑌)) |
| 19 | upeu3.o | . . . . 5 ⊢ (𝜑 → ⚬ = (〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))) | |
| 20 | 19 | oveqd 7404 | . . . 4 ⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀)) |
| 21 | 20 | eqeq2d 2740 | . . 3 ⊢ (𝜑 → (𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) ↔ 𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀))) |
| 22 | 18, 21 | reueqbidv 3394 | . 2 ⊢ (𝜑 → (∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀) ↔ ∃!𝑟 ∈ (𝑋(Iso‘𝐷)𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑌))𝑀))) |
| 23 | 16, 22 | mpbird 257 | 1 ⊢ (𝜑 → ∃!𝑟 ∈ (𝑋𝐼𝑌)𝑁 = (((𝑋𝐺𝑌)‘𝑟) ⚬ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃!wreu 3352 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 compcco 17232 Isociso 17708 UP cup 49162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-supp 8140 df-map 8801 df-ixp 8871 df-cat 17629 df-cid 17630 df-sect 17709 df-inv 17710 df-iso 17711 df-cic 17758 df-func 17820 df-up 49163 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |