Step | Hyp | Ref
| Expression |
1 | | fvexd 6929 |
. . . 4
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → (Base‘𝑑) ∈ V) |
2 | | fveq2 6914 |
. . . . . 6
⊢ (𝑑 = 𝐷 → (Base‘𝑑) = (Base‘𝐷)) |
3 | 2 | adantr 480 |
. . . . 5
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → (Base‘𝑑) = (Base‘𝐷)) |
4 | | upfval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐷) |
5 | 3, 4 | eqtr4di 2795 |
. . . 4
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → (Base‘𝑑) = 𝐵) |
6 | | fvexd 6929 |
. . . . 5
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) ∈ V) |
7 | | simplr 769 |
. . . . . . 7
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑒 = 𝐸) |
8 | 7 | fveq2d 6918 |
. . . . . 6
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = (Base‘𝐸)) |
9 | | upfval.c |
. . . . . 6
⊢ 𝐶 = (Base‘𝐸) |
10 | 8, 9 | eqtr4di 2795 |
. . . . 5
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = 𝐶) |
11 | | fvexd 6929 |
. . . . . 6
⊢ ((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) ∈ V) |
12 | | simplll 775 |
. . . . . . . 8
⊢ ((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → 𝑑 = 𝐷) |
13 | 12 | fveq2d 6918 |
. . . . . . 7
⊢ ((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = (Hom ‘𝐷)) |
14 | | upfval.h |
. . . . . . 7
⊢ 𝐻 = (Hom ‘𝐷) |
15 | 13, 14 | eqtr4di 2795 |
. . . . . 6
⊢ ((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = 𝐻) |
16 | | fvexd 6929 |
. . . . . . 7
⊢
(((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) → (Hom ‘𝑒) ∈ V) |
17 | | simp-4r 784 |
. . . . . . . . 9
⊢
(((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) → 𝑒 = 𝐸) |
18 | 17 | fveq2d 6918 |
. . . . . . . 8
⊢
(((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) → (Hom ‘𝑒) = (Hom ‘𝐸)) |
19 | | upfval.j |
. . . . . . . 8
⊢ 𝐽 = (Hom ‘𝐸) |
20 | 18, 19 | eqtr4di 2795 |
. . . . . . 7
⊢
(((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) → (Hom ‘𝑒) = 𝐽) |
21 | | fvexd 6929 |
. . . . . . . 8
⊢
((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) ∈ V) |
22 | | simp-5r 786 |
. . . . . . . . . 10
⊢
((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) → 𝑒 = 𝐸) |
23 | 22 | fveq2d 6918 |
. . . . . . . . 9
⊢
((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = (comp‘𝐸)) |
24 | | upfval.o |
. . . . . . . . 9
⊢ 𝑂 = (comp‘𝐸) |
25 | 23, 24 | eqtr4di 2795 |
. . . . . . . 8
⊢
((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = 𝑂) |
26 | | simp-6l 787 |
. . . . . . . . . 10
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑑 = 𝐷) |
27 | | simp-6r 788 |
. . . . . . . . . 10
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑒 = 𝐸) |
28 | 26, 27 | oveq12d 7456 |
. . . . . . . . 9
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸)) |
29 | | simp-4r 784 |
. . . . . . . . 9
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑐 = 𝐶) |
30 | | simp-5r 786 |
. . . . . . . . . . . . 13
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑏 = 𝐵) |
31 | 30 | eleq2d 2827 |
. . . . . . . . . . . 12
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥 ∈ 𝑏 ↔ 𝑥 ∈ 𝐵)) |
32 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑗 = 𝐽) |
33 | 32 | oveqd 7455 |
. . . . . . . . . . . . 13
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st ‘𝑓)‘𝑥)) = (𝑤𝐽((1st ‘𝑓)‘𝑥))) |
34 | 33 | eleq2d 2827 |
. . . . . . . . . . . 12
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥)))) |
35 | 31, 34 | anbi12d 632 |
. . . . . . . . . . 11
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ↔ (𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))))) |
36 | 32 | oveqd 7455 |
. . . . . . . . . . . . 13
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st ‘𝑓)‘𝑦)) = (𝑤𝐽((1st ‘𝑓)‘𝑦))) |
37 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) → ℎ = 𝐻) |
38 | 37 | oveqdr 7466 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥ℎ𝑦) = (𝑥𝐻𝑦)) |
39 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑜 = 𝑂) |
40 | 39 | oveqd 7455 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦)) = (〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))) |
41 | 40 | oveqd 7455 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚)) |
42 | 41 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))) |
43 | 38, 42 | reueqbidv 3423 |
. . . . . . . . . . . . 13
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))) |
44 | 36, 43 | raleqbidv 3346 |
. . . . . . . . . . . 12
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))) |
45 | 30, 44 | raleqbidv 3346 |
. . . . . . . . . . 11
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚) ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))) |
46 | 35, 45 | anbi12d 632 |
. . . . . . . . . 10
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚)))) |
47 | 46 | opabbidv 5217 |
. . . . . . . . 9
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))} = {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))}) |
48 | 28, 29, 47 | mpoeq123dv 7515 |
. . . . . . . 8
⊢
(((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))})) |
49 | 21, 25, 48 | csbied2 3951 |
. . . . . . 7
⊢
((((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) ∧ 𝑗 = 𝐽) → ⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))})) |
50 | 16, 20, 49 | csbied2 3951 |
. . . . . 6
⊢
(((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ ℎ = 𝐻) → ⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))})) |
51 | 11, 15, 50 | csbied2 3951 |
. . . . 5
⊢ ((((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → ⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom
‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))})) |
52 | 6, 10, 51 | csbied2 3951 |
. . . 4
⊢ (((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → ⦋(Base‘𝑒) / 𝑐⦌⦋(Hom
‘𝑑) / ℎ⦌⦋(Hom
‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))})) |
53 | 1, 5, 52 | csbied2 3951 |
. . 3
⊢ ((𝑑 = 𝐷 ∧ 𝑒 = 𝐸) → ⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))})) |
54 | | df-up 48852 |
. . 3
⊢ UP =
(𝑑 ∈ V, 𝑒 ∈ V ↦
⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) |
55 | | ovex 7471 |
. . . 4
⊢ (𝐷 Func 𝐸) ∈ V |
56 | 9 | fvexi 6928 |
. . . 4
⊢ 𝐶 ∈ V |
57 | 55, 56 | mpoex 8112 |
. . 3
⊢ (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))}) ∈ V |
58 | 53, 54, 57 | ovmpoa 7595 |
. 2
⊢ ((𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷UP𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))})) |
59 | 54 | reldmmpo 7574 |
. . . 4
⊢ Rel dom
UP |
60 | 59 | ovprc 7476 |
. . 3
⊢ (¬
(𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷UP𝐸) = ∅) |
61 | | df-func 17918 |
. . . . . . 7
⊢ Func =
(𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |
62 | 61 | reldmmpo 7574 |
. . . . . 6
⊢ Rel dom
Func |
63 | 62 | ovprc 7476 |
. . . . 5
⊢ (¬
(𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 Func 𝐸) = ∅) |
64 | 63 | orcd 874 |
. . . 4
⊢ (¬
(𝐷 ∈ V ∧ 𝐸 ∈ V) → ((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅)) |
65 | | 0mpo0 7523 |
. . . 4
⊢ (((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))}) = ∅) |
66 | 64, 65 | syl 17 |
. . 3
⊢ (¬
(𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))}) = ∅) |
67 | 60, 66 | eqtr4d 2780 |
. 2
⊢ (¬
(𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷UP𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))})) |
68 | 58, 67 | pm2.61i 182 |
1
⊢ (𝐷UP𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑚 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑤𝐽((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑂((1st ‘𝑓)‘𝑦))𝑚))}) |