Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval Structured version   Visualization version   GIF version

Theorem upfval 49084
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) (Proof shortened by Zhi Wang, 12-Nov-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
upfval (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝐶,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝐷,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐸,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐻,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐽,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝑂,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦

Proof of Theorem upfval
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑗 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6880 . . . 4 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) ∈ V)
2 fveq2 6865 . . . . . 6 (𝑑 = 𝐷 → (Base‘𝑑) = (Base‘𝐷))
32adantr 480 . . . . 5 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) = (Base‘𝐷))
4 upfval.b . . . . 5 𝐵 = (Base‘𝐷)
53, 4eqtr4di 2783 . . . 4 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) = 𝐵)
6 fvexd 6880 . . . . 5 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) ∈ V)
7 simplr 768 . . . . . . 7 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑒 = 𝐸)
87fveq2d 6869 . . . . . 6 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = (Base‘𝐸))
9 upfval.c . . . . . 6 𝐶 = (Base‘𝐸)
108, 9eqtr4di 2783 . . . . 5 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = 𝐶)
11 fvexd 6880 . . . . . 6 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) ∈ V)
12 simplll 774 . . . . . . . 8 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → 𝑑 = 𝐷)
1312fveq2d 6869 . . . . . . 7 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = (Hom ‘𝐷))
14 upfval.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
1513, 14eqtr4di 2783 . . . . . 6 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = 𝐻)
16 fvexd 6880 . . . . . . 7 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) ∈ V)
17 simp-4r 783 . . . . . . . . 9 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → 𝑒 = 𝐸)
1817fveq2d 6869 . . . . . . . 8 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) = (Hom ‘𝐸))
19 upfval.j . . . . . . . 8 𝐽 = (Hom ‘𝐸)
2018, 19eqtr4di 2783 . . . . . . 7 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) = 𝐽)
21 fvexd 6880 . . . . . . . 8 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) ∈ V)
22 simp-5r 785 . . . . . . . . . 10 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → 𝑒 = 𝐸)
2322fveq2d 6869 . . . . . . . . 9 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = (comp‘𝐸))
24 upfval.o . . . . . . . . 9 𝑂 = (comp‘𝐸)
2523, 24eqtr4di 2783 . . . . . . . 8 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = 𝑂)
26 simp-6l 786 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑑 = 𝐷)
27 simp-6r 787 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑒 = 𝐸)
2826, 27oveq12d 7412 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
29 simp-4r 783 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑐 = 𝐶)
30 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑏 = 𝐵)
3130eleq2d 2815 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥𝑏𝑥𝐵))
32 simplr 768 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑗 = 𝐽)
3332oveqd 7411 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝑓)‘𝑥)))
3433eleq2d 2815 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))))
3531, 34anbi12d 632 . . . . . . . . . . 11 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)))))
3632oveqd 7411 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝑓)‘𝑦)))
37 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → = 𝐻)
3837oveqdr 7422 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥𝑦) = (𝑥𝐻𝑦))
39 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑜 = 𝑂)
4039oveqd 7411 . . . . . . . . . . . . . . . 16 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)))
4140oveqd 7411 . . . . . . . . . . . . . . 15 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))
4241eqeq2d 2741 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4338, 42reueqbidv 3400 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4436, 43raleqbidv 3322 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4530, 44raleqbidv 3322 . . . . . . . . . . 11 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4635, 45anbi12d 632 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))))
4746opabbidv 5181 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
4828, 29, 47mpoeq123dv 7471 . . . . . . . 8 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
4921, 25, 48csbied2 3907 . . . . . . 7 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
5016, 20, 49csbied2 3907 . . . . . 6 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
5111, 15, 50csbied2 3907 . . . . 5 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
526, 10, 51csbied2 3907 . . . 4 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
531, 5, 52csbied2 3907 . . 3 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
54 df-up 49082 . . 3 UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
55 ovex 7427 . . . 4 (𝐷 Func 𝐸) ∈ V
569fvexi 6879 . . . 4 𝐶 ∈ V
5755, 56mpoex 8067 . . 3 (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) ∈ V
5853, 54, 57ovmpoa 7551 . 2 ((𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
59 reldmup 49083 . . . 4 Rel dom UP
6059ovprc 7432 . . 3 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = ∅)
61 reldmfunc 48992 . . . . . 6 Rel dom Func
6261ovprc 7432 . . . . 5 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 Func 𝐸) = ∅)
6362orcd 873 . . . 4 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → ((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅))
64 0mpo0 7479 . . . 4 (((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) = ∅)
6660, 65eqtr4d 2768 . 2 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
6758, 66pm2.61i 182 1 (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3046  ∃!wreu 3355  Vcvv 3455  csb 3870  c0 4304  cop 4603  {copab 5177  cfv 6519  (class class class)co 7394  cmpo 7396  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822   UP cup 49081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-func 17826  df-up 49082
This theorem is referenced by:  upfval2  49085  reldmup2  49089  relup  49090  uprcl  49091
  Copyright terms: Public domain W3C validator