Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval Structured version   Visualization version   GIF version

Theorem upfval 49207
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) (Proof shortened by Zhi Wang, 12-Nov-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
upfval (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝐶,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝐷,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐸,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐻,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐽,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝑂,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦

Proof of Theorem upfval
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑗 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6837 . . . 4 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) ∈ V)
2 fveq2 6822 . . . . . 6 (𝑑 = 𝐷 → (Base‘𝑑) = (Base‘𝐷))
32adantr 480 . . . . 5 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) = (Base‘𝐷))
4 upfval.b . . . . 5 𝐵 = (Base‘𝐷)
53, 4eqtr4di 2784 . . . 4 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) = 𝐵)
6 fvexd 6837 . . . . 5 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) ∈ V)
7 simplr 768 . . . . . . 7 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑒 = 𝐸)
87fveq2d 6826 . . . . . 6 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = (Base‘𝐸))
9 upfval.c . . . . . 6 𝐶 = (Base‘𝐸)
108, 9eqtr4di 2784 . . . . 5 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = 𝐶)
11 fvexd 6837 . . . . . 6 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) ∈ V)
12 simplll 774 . . . . . . . 8 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → 𝑑 = 𝐷)
1312fveq2d 6826 . . . . . . 7 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = (Hom ‘𝐷))
14 upfval.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
1513, 14eqtr4di 2784 . . . . . 6 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = 𝐻)
16 fvexd 6837 . . . . . . 7 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) ∈ V)
17 simp-4r 783 . . . . . . . . 9 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → 𝑒 = 𝐸)
1817fveq2d 6826 . . . . . . . 8 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) = (Hom ‘𝐸))
19 upfval.j . . . . . . . 8 𝐽 = (Hom ‘𝐸)
2018, 19eqtr4di 2784 . . . . . . 7 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) = 𝐽)
21 fvexd 6837 . . . . . . . 8 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) ∈ V)
22 simp-5r 785 . . . . . . . . . 10 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → 𝑒 = 𝐸)
2322fveq2d 6826 . . . . . . . . 9 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = (comp‘𝐸))
24 upfval.o . . . . . . . . 9 𝑂 = (comp‘𝐸)
2523, 24eqtr4di 2784 . . . . . . . 8 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = 𝑂)
26 simp-6l 786 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑑 = 𝐷)
27 simp-6r 787 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑒 = 𝐸)
2826, 27oveq12d 7364 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
29 simp-4r 783 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑐 = 𝐶)
30 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑏 = 𝐵)
3130eleq2d 2817 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥𝑏𝑥𝐵))
32 simplr 768 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑗 = 𝐽)
3332oveqd 7363 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝑓)‘𝑥)))
3433eleq2d 2817 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))))
3531, 34anbi12d 632 . . . . . . . . . . 11 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)))))
3632oveqd 7363 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝑓)‘𝑦)))
37 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → = 𝐻)
3837oveqdr 7374 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥𝑦) = (𝑥𝐻𝑦))
39 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑜 = 𝑂)
4039oveqd 7363 . . . . . . . . . . . . . . . 16 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)))
4140oveqd 7363 . . . . . . . . . . . . . . 15 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))
4241eqeq2d 2742 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4338, 42reueqbidv 3384 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4436, 43raleqbidv 3312 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4530, 44raleqbidv 3312 . . . . . . . . . . 11 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4635, 45anbi12d 632 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))))
4746opabbidv 5157 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
4828, 29, 47mpoeq123dv 7421 . . . . . . . 8 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
4921, 25, 48csbied2 3887 . . . . . . 7 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
5016, 20, 49csbied2 3887 . . . . . 6 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
5111, 15, 50csbied2 3887 . . . . 5 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
526, 10, 51csbied2 3887 . . . 4 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
531, 5, 52csbied2 3887 . . 3 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
54 df-up 49205 . . 3 UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
55 ovex 7379 . . . 4 (𝐷 Func 𝐸) ∈ V
569fvexi 6836 . . . 4 𝐶 ∈ V
5755, 56mpoex 8011 . . 3 (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) ∈ V
5853, 54, 57ovmpoa 7501 . 2 ((𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
59 reldmup 49206 . . . 4 Rel dom UP
6059ovprc 7384 . . 3 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = ∅)
61 reldmfunc 49106 . . . . . 6 Rel dom Func
6261ovprc 7384 . . . . 5 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 Func 𝐸) = ∅)
6362orcd 873 . . . 4 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → ((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅))
64 0mpo0 7429 . . . 4 (((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) = ∅)
6660, 65eqtr4d 2769 . 2 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
6758, 66pm2.61i 182 1 (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  Vcvv 3436  csb 3850  c0 4283  cop 4582  {copab 5153  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  compcco 17170   Func cfunc 17758   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-func 17762  df-up 49205
This theorem is referenced by:  upfval2  49208  uppropd  49212  reldmup2  49213  relup  49214  uprcl  49215
  Copyright terms: Public domain W3C validator