Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval Structured version   Visualization version   GIF version

Theorem upfval 49162
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) (Proof shortened by Zhi Wang, 12-Nov-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
upfval (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝐶,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝐷,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐸,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐻,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐽,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝑂,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦

Proof of Theorem upfval
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑗 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6841 . . . 4 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) ∈ V)
2 fveq2 6826 . . . . . 6 (𝑑 = 𝐷 → (Base‘𝑑) = (Base‘𝐷))
32adantr 480 . . . . 5 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) = (Base‘𝐷))
4 upfval.b . . . . 5 𝐵 = (Base‘𝐷)
53, 4eqtr4di 2782 . . . 4 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) = 𝐵)
6 fvexd 6841 . . . . 5 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) ∈ V)
7 simplr 768 . . . . . . 7 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑒 = 𝐸)
87fveq2d 6830 . . . . . 6 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = (Base‘𝐸))
9 upfval.c . . . . . 6 𝐶 = (Base‘𝐸)
108, 9eqtr4di 2782 . . . . 5 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = 𝐶)
11 fvexd 6841 . . . . . 6 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) ∈ V)
12 simplll 774 . . . . . . . 8 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → 𝑑 = 𝐷)
1312fveq2d 6830 . . . . . . 7 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = (Hom ‘𝐷))
14 upfval.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
1513, 14eqtr4di 2782 . . . . . 6 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = 𝐻)
16 fvexd 6841 . . . . . . 7 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) ∈ V)
17 simp-4r 783 . . . . . . . . 9 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → 𝑒 = 𝐸)
1817fveq2d 6830 . . . . . . . 8 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) = (Hom ‘𝐸))
19 upfval.j . . . . . . . 8 𝐽 = (Hom ‘𝐸)
2018, 19eqtr4di 2782 . . . . . . 7 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) = 𝐽)
21 fvexd 6841 . . . . . . . 8 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) ∈ V)
22 simp-5r 785 . . . . . . . . . 10 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → 𝑒 = 𝐸)
2322fveq2d 6830 . . . . . . . . 9 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = (comp‘𝐸))
24 upfval.o . . . . . . . . 9 𝑂 = (comp‘𝐸)
2523, 24eqtr4di 2782 . . . . . . . 8 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = 𝑂)
26 simp-6l 786 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑑 = 𝐷)
27 simp-6r 787 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑒 = 𝐸)
2826, 27oveq12d 7371 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
29 simp-4r 783 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑐 = 𝐶)
30 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑏 = 𝐵)
3130eleq2d 2814 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥𝑏𝑥𝐵))
32 simplr 768 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑗 = 𝐽)
3332oveqd 7370 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝑓)‘𝑥)))
3433eleq2d 2814 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))))
3531, 34anbi12d 632 . . . . . . . . . . 11 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)))))
3632oveqd 7370 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝑓)‘𝑦)))
37 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → = 𝐻)
3837oveqdr 7381 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥𝑦) = (𝑥𝐻𝑦))
39 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑜 = 𝑂)
4039oveqd 7370 . . . . . . . . . . . . . . . 16 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)))
4140oveqd 7370 . . . . . . . . . . . . . . 15 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))
4241eqeq2d 2740 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4338, 42reueqbidv 3385 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4436, 43raleqbidv 3310 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4530, 44raleqbidv 3310 . . . . . . . . . . 11 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4635, 45anbi12d 632 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))))
4746opabbidv 5161 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
4828, 29, 47mpoeq123dv 7428 . . . . . . . 8 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
4921, 25, 48csbied2 3890 . . . . . . 7 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
5016, 20, 49csbied2 3890 . . . . . 6 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
5111, 15, 50csbied2 3890 . . . . 5 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
526, 10, 51csbied2 3890 . . . 4 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
531, 5, 52csbied2 3890 . . 3 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
54 df-up 49160 . . 3 UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
55 ovex 7386 . . . 4 (𝐷 Func 𝐸) ∈ V
569fvexi 6840 . . . 4 𝐶 ∈ V
5755, 56mpoex 8021 . . 3 (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) ∈ V
5853, 54, 57ovmpoa 7508 . 2 ((𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
59 reldmup 49161 . . . 4 Rel dom UP
6059ovprc 7391 . . 3 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = ∅)
61 reldmfunc 49061 . . . . . 6 Rel dom Func
6261ovprc 7391 . . . . 5 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 Func 𝐸) = ∅)
6362orcd 873 . . . 4 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → ((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅))
64 0mpo0 7436 . . . 4 (((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) = ∅)
6660, 65eqtr4d 2767 . 2 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
6758, 66pm2.61i 182 1 (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  Vcvv 3438  csb 3853  c0 4286  cop 4585  {copab 5157  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  Hom chom 17190  compcco 17191   Func cfunc 17779   UP cup 49159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-func 17783  df-up 49160
This theorem is referenced by:  upfval2  49163  uppropd  49167  reldmup2  49168  relup  49169  uprcl  49170
  Copyright terms: Public domain W3C validator