Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upfval Structured version   Visualization version   GIF version

Theorem upfval 49165
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025.) (Proof shortened by Zhi Wang, 12-Nov-2025.)
Hypotheses
Ref Expression
upfval.b 𝐵 = (Base‘𝐷)
upfval.c 𝐶 = (Base‘𝐸)
upfval.h 𝐻 = (Hom ‘𝐷)
upfval.j 𝐽 = (Hom ‘𝐸)
upfval.o 𝑂 = (comp‘𝐸)
Assertion
Ref Expression
upfval (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
Distinct variable groups:   𝐵,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝐶,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝐷,𝑓,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐸,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐻,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝐽,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦   𝑓,𝑂,𝑔,𝑘,𝑚,𝑤,𝑥,𝑦

Proof of Theorem upfval
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑗 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6873 . . . 4 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) ∈ V)
2 fveq2 6858 . . . . . 6 (𝑑 = 𝐷 → (Base‘𝑑) = (Base‘𝐷))
32adantr 480 . . . . 5 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) = (Base‘𝐷))
4 upfval.b . . . . 5 𝐵 = (Base‘𝐷)
53, 4eqtr4di 2782 . . . 4 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) = 𝐵)
6 fvexd 6873 . . . . 5 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) ∈ V)
7 simplr 768 . . . . . . 7 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → 𝑒 = 𝐸)
87fveq2d 6862 . . . . . 6 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = (Base‘𝐸))
9 upfval.c . . . . . 6 𝐶 = (Base‘𝐸)
108, 9eqtr4di 2782 . . . . 5 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) = 𝐶)
11 fvexd 6873 . . . . . 6 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) ∈ V)
12 simplll 774 . . . . . . . 8 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → 𝑑 = 𝐷)
1312fveq2d 6862 . . . . . . 7 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = (Hom ‘𝐷))
14 upfval.h . . . . . . 7 𝐻 = (Hom ‘𝐷)
1513, 14eqtr4di 2782 . . . . . 6 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) = 𝐻)
16 fvexd 6873 . . . . . . 7 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) ∈ V)
17 simp-4r 783 . . . . . . . . 9 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → 𝑒 = 𝐸)
1817fveq2d 6862 . . . . . . . 8 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) = (Hom ‘𝐸))
19 upfval.j . . . . . . . 8 𝐽 = (Hom ‘𝐸)
2018, 19eqtr4di 2782 . . . . . . 7 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) = 𝐽)
21 fvexd 6873 . . . . . . . 8 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) ∈ V)
22 simp-5r 785 . . . . . . . . . 10 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → 𝑒 = 𝐸)
2322fveq2d 6862 . . . . . . . . 9 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = (comp‘𝐸))
24 upfval.o . . . . . . . . 9 𝑂 = (comp‘𝐸)
2523, 24eqtr4di 2782 . . . . . . . 8 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) = 𝑂)
26 simp-6l 786 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑑 = 𝐷)
27 simp-6r 787 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑒 = 𝐸)
2826, 27oveq12d 7405 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑑 Func 𝑒) = (𝐷 Func 𝐸))
29 simp-4r 783 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑐 = 𝐶)
30 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑏 = 𝐵)
3130eleq2d 2814 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥𝑏𝑥𝐵))
32 simplr 768 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑗 = 𝐽)
3332oveqd 7404 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st𝑓)‘𝑥)) = (𝑤𝐽((1st𝑓)‘𝑥)))
3433eleq2d 2814 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥)) ↔ 𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))))
3531, 34anbi12d 632 . . . . . . . . . . 11 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ↔ (𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥)))))
3632oveqd 7404 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑤𝑗((1st𝑓)‘𝑦)) = (𝑤𝐽((1st𝑓)‘𝑦)))
37 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → = 𝐻)
3837oveqdr 7415 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑥𝑦) = (𝑥𝐻𝑦))
39 simpr 484 . . . . . . . . . . . . . . . . 17 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → 𝑜 = 𝑂)
4039oveqd 7404 . . . . . . . . . . . . . . . 16 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦)) = (⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦)))
4140oveqd 7404 . . . . . . . . . . . . . . 15 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))
4241eqeq2d 2740 . . . . . . . . . . . . . 14 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ 𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4338, 42reueqbidv 3394 . . . . . . . . . . . . 13 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4436, 43raleqbidv 3319 . . . . . . . . . . . 12 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4530, 44raleqbidv 3319 . . . . . . . . . . 11 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚) ↔ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚)))
4635, 45anbi12d 632 . . . . . . . . . 10 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚)) ↔ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))))
4746opabbidv 5173 . . . . . . . . 9 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))} = {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
4828, 29, 47mpoeq123dv 7464 . . . . . . . 8 (((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) ∧ 𝑜 = 𝑂) → (𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
4921, 25, 48csbied2 3899 . . . . . . 7 ((((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) ∧ 𝑗 = 𝐽) → (comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
5016, 20, 49csbied2 3899 . . . . . 6 (((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) ∧ = 𝐻) → (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
5111, 15, 50csbied2 3899 . . . . 5 ((((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → (Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
526, 10, 51csbied2 3899 . . . 4 (((𝑑 = 𝐷𝑒 = 𝐸) ∧ 𝑏 = 𝐵) → (Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
531, 5, 52csbied2 3899 . . 3 ((𝑑 = 𝐷𝑒 = 𝐸) → (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
54 df-up 49163 . . 3 UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
55 ovex 7420 . . . 4 (𝐷 Func 𝐸) ∈ V
569fvexi 6872 . . . 4 𝐶 ∈ V
5755, 56mpoex 8058 . . 3 (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) ∈ V
5853, 54, 57ovmpoa 7544 . 2 ((𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
59 reldmup 49164 . . . 4 Rel dom UP
6059ovprc 7425 . . 3 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = ∅)
61 reldmfunc 49064 . . . . . 6 Rel dom Func
6261ovprc 7425 . . . . 5 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 Func 𝐸) = ∅)
6362orcd 873 . . . 4 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → ((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅))
64 0mpo0 7472 . . . 4 (((𝐷 Func 𝐸) = ∅ ∨ 𝐶 = ∅) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) = ∅)
6563, 64syl 17 . . 3 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}) = ∅)
6660, 65eqtr4d 2767 . 2 (¬ (𝐷 ∈ V ∧ 𝐸 ∈ V) → (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))}))
6758, 66pm2.61i 182 1 (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤𝐶 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝐵𝑚 ∈ (𝑤𝐽((1st𝑓)‘𝑥))) ∧ ∀𝑦𝐵𝑔 ∈ (𝑤𝐽((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝐻𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑂((1st𝑓)‘𝑦))𝑚))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  Vcvv 3447  csb 3862  c0 4296  cop 4595  {copab 5169  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  compcco 17232   Func cfunc 17816   UP cup 49162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-func 17820  df-up 49163
This theorem is referenced by:  upfval2  49166  uppropd  49170  reldmup2  49171  relup  49172  uprcl  49173
  Copyright terms: Public domain W3C validator