Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmup Structured version   Visualization version   GIF version

Theorem reldmup 49083
Description: The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.)
Assertion
Ref Expression
reldmup Rel dom UP

Proof of Theorem reldmup
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑗 𝑘 𝑚 𝑜 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-up 49082 . 2 UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
21reldmmpo 7530 1 Rel dom UP
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3046  ∃!wreu 3355  Vcvv 3455  csb 3870  cop 4603  {copab 5177  dom cdm 5646  Rel wrel 5651  cfv 6519  (class class class)co 7394  cmpo 7396  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822   UP cup 49081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-xp 5652  df-rel 5653  df-dm 5656  df-oprab 7398  df-mpo 7399  df-up 49082
This theorem is referenced by:  upfval  49084
  Copyright terms: Public domain W3C validator