Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmup Structured version   Visualization version   GIF version

Theorem reldmup 48887
Description: The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.)
Assertion
Ref Expression
reldmup Rel dom UP

Proof of Theorem reldmup
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑗 𝑘 𝑚 𝑜 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-up 48886 . 2 UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
21reldmmpo 7550 1 Rel dom UP
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3362  Vcvv 3464  csb 3881  cop 4614  {copab 5187  dom cdm 5667  Rel wrel 5672  cfv 6542  (class class class)co 7414  cmpo 7416  1st c1st 7995  2nd c2nd 7996  Basecbs 17230  Hom chom 17285  compcco 17286   Func cfunc 17871  UPcup 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673  df-rel 5674  df-dm 5677  df-oprab 7418  df-mpo 7419  df-up 48886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator