Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmup Structured version   Visualization version   GIF version

Theorem reldmup 48853
Description: The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.)
Assertion
Ref Expression
reldmup Rel dom UP

Proof of Theorem reldmup
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑗 𝑘 𝑚 𝑜 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-up 48852 . 2 UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
21reldmmpo 7574 1 Rel dom UP
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wral 3061  ∃!wreu 3378  Vcvv 3481  csb 3911  cop 4640  {copab 5213  dom cdm 5693  Rel wrel 5698  cfv 6569  (class class class)co 7438  cmpo 7440  1st c1st 8020  2nd c2nd 8021  Basecbs 17254  Hom chom 17318  compcco 17319   Func cfunc 17914  UPcup 48851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-dm 5703  df-oprab 7442  df-mpo 7443  df-up 48852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator