| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmup | Structured version Visualization version GIF version | ||
| Description: The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.) |
| Ref | Expression |
|---|---|
| reldmup | ⊢ Rel dom UP |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-up 48886 | . 2 ⊢ UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ ⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) | |
| 2 | 1 | reldmmpo 7550 | 1 ⊢ Rel dom UP |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3362 Vcvv 3464 ⦋csb 3881 〈cop 4614 {copab 5187 dom cdm 5667 Rel wrel 5672 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 1st c1st 7995 2nd c2nd 7996 Basecbs 17230 Hom chom 17285 compcco 17286 Func cfunc 17871 UPcup 48885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-dm 5677 df-oprab 7418 df-mpo 7419 df-up 48886 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |