Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmup Structured version   Visualization version   GIF version

Theorem reldmup 49206
Description: The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.)
Assertion
Ref Expression
reldmup Rel dom UP

Proof of Theorem reldmup
Dummy variables 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑗 𝑘 𝑚 𝑜 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-up 49205 . 2 UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
21reldmmpo 7480 1 Rel dom UP
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  Vcvv 3436  csb 3850  cop 4582  {copab 5153  dom cdm 5616  Rel wrel 5621  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  compcco 17170   Func cfunc 17758   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-dm 5626  df-oprab 7350  df-mpo 7351  df-up 49205
This theorem is referenced by:  upfval  49207
  Copyright terms: Public domain W3C validator