![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmup | Structured version Visualization version GIF version |
Description: The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025.) |
Ref | Expression |
---|---|
reldmup | ⊢ Rel dom UP |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-up 48852 | . 2 ⊢ UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ ⦋(Base‘𝑑) / 𝑏⦌⦋(Base‘𝑒) / 𝑐⦌⦋(Hom ‘𝑑) / ℎ⦌⦋(Hom ‘𝑒) / 𝑗⦌⦋(comp‘𝑒) / 𝑜⦌(𝑓 ∈ (𝑑 Func 𝑒), 𝑤 ∈ 𝑐 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑚 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ 𝑏 ∀𝑔 ∈ (𝑤𝑗((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥ℎ𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉𝑜((1st ‘𝑓)‘𝑦))𝑚))})) | |
2 | 1 | reldmmpo 7574 | 1 ⊢ Rel dom UP |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃!wreu 3378 Vcvv 3481 ⦋csb 3911 〈cop 4640 {copab 5213 dom cdm 5693 Rel wrel 5698 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 1st c1st 8020 2nd c2nd 8021 Basecbs 17254 Hom chom 17318 compcco 17319 Func cfunc 17914 UPcup 48851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-dm 5703 df-oprab 7442 df-mpo 7443 df-up 48852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |