| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-uz | Structured version Visualization version GIF version | ||
| Description: Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 12731 for its value, uzssz 12750 for its relationship to ℤ, nnuz 12772 and nn0uz 12771 for its relationships to ℕ and ℕ0, and eluz1 12733 and eluz2 12735 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| df-uz | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuz 12729 | . 2 class ℤ≥ | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | cz 12465 | . . 3 class ℤ | |
| 4 | 2 | cv 1540 | . . . . 5 class 𝑗 |
| 5 | vk | . . . . . 6 setvar 𝑘 | |
| 6 | 5 | cv 1540 | . . . . 5 class 𝑘 |
| 7 | cle 11144 | . . . . 5 class ≤ | |
| 8 | 4, 6, 7 | wbr 5091 | . . . 4 wff 𝑗 ≤ 𝑘 |
| 9 | 8, 5, 3 | crab 3395 | . . 3 class {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} |
| 10 | 2, 3, 9 | cmpt 5172 | . 2 class (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| 11 | 1, 10 | wceq 1541 | 1 wff ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: uzval 12731 uzf 12732 |
| Copyright terms: Public domain | W3C validator |