| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-uz | Structured version Visualization version GIF version | ||
| Description: Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 12755 for its value, uzssz 12774 for its relationship to ℤ, nnuz 12796 and nn0uz 12795 for its relationships to ℕ and ℕ0, and eluz1 12757 and eluz2 12759 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| df-uz | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuz 12753 | . 2 class ℤ≥ | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | cz 12489 | . . 3 class ℤ | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑗 |
| 5 | vk | . . . . . 6 setvar 𝑘 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑘 |
| 7 | cle 11169 | . . . . 5 class ≤ | |
| 8 | 4, 6, 7 | wbr 5095 | . . . 4 wff 𝑗 ≤ 𝑘 |
| 9 | 8, 5, 3 | crab 3396 | . . 3 class {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} |
| 10 | 2, 3, 9 | cmpt 5176 | . 2 class (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| 11 | 1, 10 | wceq 1540 | 1 wff ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: uzval 12755 uzf 12756 |
| Copyright terms: Public domain | W3C validator |