| Metamath
Proof Explorer Theorem List (p. 129 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 10p10e20 12801 | 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (;10 + ;10) = ;20 | ||
| Theorem | 10m1e9 12802 | 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.) |
| ⊢ (;10 − 1) = 9 | ||
| Theorem | 4t3lem 12803 | Lemma for 4t3e12 12804 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷 & ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 | ||
| Theorem | 4t3e12 12804 | 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (4 · 3) = ;12 | ||
| Theorem | 4t4e16 12805 | 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (4 · 4) = ;16 | ||
| Theorem | 5t2e10 12806 | 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
| ⊢ (5 · 2) = ;10 | ||
| Theorem | 5t3e15 12807 | 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 3) = ;15 | ||
| Theorem | 5t4e20 12808 | 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 4) = ;20 | ||
| Theorem | 5t5e25 12809 | 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 5) = ;25 | ||
| Theorem | 6t2e12 12810 | 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 2) = ;12 | ||
| Theorem | 6t3e18 12811 | 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 3) = ;18 | ||
| Theorem | 6t4e24 12812 | 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 4) = ;24 | ||
| Theorem | 6t5e30 12813 | 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 · 5) = ;30 | ||
| Theorem | 6t6e36 12814 | 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 · 6) = ;36 | ||
| Theorem | 7t2e14 12815 | 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 2) = ;14 | ||
| Theorem | 7t3e21 12816 | 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 3) = ;21 | ||
| Theorem | 7t4e28 12817 | 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 4) = ;28 | ||
| Theorem | 7t5e35 12818 | 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 5) = ;35 | ||
| Theorem | 7t6e42 12819 | 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 6) = ;42 | ||
| Theorem | 7t7e49 12820 | 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 7) = ;49 | ||
| Theorem | 8t2e16 12821 | 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 2) = ;16 | ||
| Theorem | 8t3e24 12822 | 8 times 3 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 3) = ;24 | ||
| Theorem | 8t4e32 12823 | 8 times 4 equals 32. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 4) = ;32 | ||
| Theorem | 8t5e40 12824 | 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 · 5) = ;40 | ||
| Theorem | 8t6e48 12825 | 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 · 6) = ;48 | ||
| Theorem | 8t7e56 12826 | 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 7) = ;56 | ||
| Theorem | 8t8e64 12827 | 8 times 8 equals 64. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 8) = ;64 | ||
| Theorem | 9t2e18 12828 | 9 times 2 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 2) = ;18 | ||
| Theorem | 9t3e27 12829 | 9 times 3 equals 27. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 3) = ;27 | ||
| Theorem | 9t4e36 12830 | 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 4) = ;36 | ||
| Theorem | 9t5e45 12831 | 9 times 5 equals 45. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 5) = ;45 | ||
| Theorem | 9t6e54 12832 | 9 times 6 equals 54. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 6) = ;54 | ||
| Theorem | 9t7e63 12833 | 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 7) = ;63 | ||
| Theorem | 9t8e72 12834 | 9 times 8 equals 72. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 8) = ;72 | ||
| Theorem | 9t9e81 12835 | 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 · 9) = ;81 | ||
| Theorem | 9t11e99 12836 | 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (9 · ;11) = ;99 | ||
| Theorem | 9lt10 12837 | 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 9 < ;10 | ||
| Theorem | 8lt10 12838 | 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 8 < ;10 | ||
| Theorem | 7lt10 12839 | 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 7 < ;10 | ||
| Theorem | 6lt10 12840 | 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 6 < ;10 | ||
| Theorem | 5lt10 12841 | 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 5 < ;10 | ||
| Theorem | 4lt10 12842 | 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 4 < ;10 | ||
| Theorem | 3lt10 12843 | 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 3 < ;10 | ||
| Theorem | 2lt10 12844 | 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 2 < ;10 | ||
| Theorem | 1lt10 12845 | 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 1 < ;10 | ||
| Theorem | decbin0 12846 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) | ||
| Theorem | decbin2 12847 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) | ||
| Theorem | decbin3 12848 | Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) | ||
| Theorem | 5recm6rec 12849 | One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017.) |
| ⊢ ((1 / 5) − (1 / 6)) = (1 / ;30) | ||
| Syntax | cuz 12850 | Extend class notation with the upper integer function. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". |
| class ℤ≥ | ||
| Definition | df-uz 12851* | Define a function whose value at 𝑗 is the semi-infinite set of contiguous integers starting at 𝑗, which we will also call the upper integers starting at 𝑗. Read "ℤ≥‘𝑀 " as "the set of integers greater than or equal to 𝑀". See uzval 12852 for its value, uzssz 12871 for its relationship to ℤ, nnuz 12893 and nn0uz 12892 for its relationships to ℕ and ℕ0, and eluz1 12854 and eluz2 12856 for its membership relations. (Contributed by NM, 5-Sep-2005.) |
| ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | ||
| Theorem | uzval 12852* | The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) | ||
| Theorem | uzf 12853 | The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ ℤ≥:ℤ⟶𝒫 ℤ | ||
| Theorem | eluz1 12854 | Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
| ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | ||
| Theorem | eluzel2 12855 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | ||
| Theorem | eluz2 12856 | Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show 𝑀 ∈ ℤ. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
| Theorem | eluzmn 12857 | Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑀 ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
| Theorem | eluz1i 12858 | Membership in an upper set of integers. (Contributed by NM, 5-Sep-2005.) |
| ⊢ 𝑀 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | ||
| Theorem | eluzuzle 12859 | An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
| ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) | ||
| Theorem | eluzelz 12860 | A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | ||
| Theorem | eluzelre 12861 | A member of an upper set of integers is a real. (Contributed by Mario Carneiro, 31-Aug-2013.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | ||
| Theorem | eluzelcn 12862 | A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) | ||
| Theorem | eluzle 12863 | Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | ||
| Theorem | eluz 12864 | Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) | ||
| Theorem | uzid 12865 | Membership of the least member in an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | uzidd 12866 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | uzn0 12867 | The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014.) |
| ⊢ (𝑀 ∈ ran ℤ≥ → 𝑀 ≠ ∅) | ||
| Theorem | uztrn 12868 | Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005.) |
| ⊢ ((𝑀 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | ||
| Theorem | uztrn2 12869 | Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
| ⊢ 𝑍 = (ℤ≥‘𝐾) ⇒ ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ 𝑍) | ||
| Theorem | uzneg 12870 | Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → -𝑀 ∈ (ℤ≥‘-𝑁)) | ||
| Theorem | uzssz 12871 | An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| ⊢ (ℤ≥‘𝑀) ⊆ ℤ | ||
| Theorem | uzssre 12872 | An upper set of integers is a subset of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (ℤ≥‘𝑀) ⊆ ℝ | ||
| Theorem | uzss 12873 | Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | ||
| Theorem | uztric 12874 | Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | ||
| Theorem | uz11 12875 | The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.) |
| ⊢ (𝑀 ∈ ℤ → ((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) | ||
| Theorem | eluzp1m1 12876 | Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | eluzp1l 12877 | Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑁) | ||
| Theorem | eluzp1p1 12878 | Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) | ||
| Theorem | eluzadd 12879 | Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by SN, 7-Feb-2025.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
| Theorem | eluzsub 12880 | Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by SN, 7-Feb-2025.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | eluzaddi 12881 | Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) Shorten and remove 𝑀 ∈ ℤ hypothesis. (Revised by SN, 7-Feb-2025.) |
| ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
| Theorem | eluzaddiOLD 12882 | Obsolete version of eluzaddi 12881 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
| Theorem | eluzsubi 12883 | Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof shortened by SN, 7-Feb-2025.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | eluzsubiOLD 12884 | Obsolete version of eluzsubi 12883 as of 7-Feb-2025. (Contributed by Paul Chapman, 22-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | eluzaddOLD 12885 | Obsolete version of eluzadd 12879 as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
| Theorem | eluzsubOLD 12886 | Obsolete version of eluzsub 12880 as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
| Theorem | subeluzsub 12887 | Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀 − 𝐾) ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
| Theorem | uzm1 12888 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) | ||
| Theorem | uznn0sub 12889 | The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | ||
| Theorem | uzin 12890 | Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) = (ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
| Theorem | uzp1 12891 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) | ||
| Theorem | nn0uz 12892 | Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| ⊢ ℕ0 = (ℤ≥‘0) | ||
| Theorem | nnuz 12893 | Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
| ⊢ ℕ = (ℤ≥‘1) | ||
| Theorem | elnnuz 12894 | A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | ||
| Theorem | elnn0uz 12895 | A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | ||
| Theorem | eluz2nn 12896 | An integer greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
| ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | ||
| Theorem | eluz4eluz2 12897 | An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023.) |
| ⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ (ℤ≥‘2)) | ||
| Theorem | eluz4eluz3 12898 | An integer greater than or equal to 4 is an integer greater than or equal to 3. (Contributed by AV, 5-Sep-2025.) |
| ⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ (ℤ≥‘3)) | ||
| Theorem | 5eluz3 12899 | 5 is an integer greater than or equal to 3. (Contributed by AV, 7-Sep-2025.) |
| ⊢ 5 ∈ (ℤ≥‘3) | ||
| Theorem | eluz4nn 12900 | An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023.) |
| ⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ ℕ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |