Home | Metamath
Proof Explorer Theorem List (p. 129 of 463) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29023) |
Hilbert Space Explorer
(29024-30546) |
Users' Mathboxes
(30547-46208) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | max2 12801 | A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | 2resupmax 12802 | The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | min1 12803 | The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
Theorem | min2 12804 | The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
Theorem | maxle 12805 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by NM, 29-Sep-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
Theorem | lemin 12806 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
Theorem | maxlt 12807 | Two ways of saying the maximum of two numbers is less than a third. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
Theorem | ltmin 12808 | Two ways of saying a number is less than the minimum of two others. (Contributed by NM, 1-Sep-2006.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
Theorem | lemaxle 12809 | A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.) |
⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) | ||
Theorem | max0sub 12810 | Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) | ||
Theorem | ifle 12811 | An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) | ||
Theorem | z2ge 12812* | There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) | ||
Theorem | qbtwnre 12813* | The rational numbers are dense in ℝ: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
Theorem | qbtwnxr 12814* | The rational numbers are dense in ℝ*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
Theorem | qsqueeze 12815* | If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) | ||
Theorem | qextltlem 12816* | Lemma for qextlt 12817 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | ||
Theorem | qextlt 12817* | An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) | ||
Theorem | qextle 12818* | An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) | ||
Theorem | xralrple 12819* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) | ||
Theorem | alrple 12820* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) | ||
Theorem | xnegeq 12821 | Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | ||
Theorem | xnegex 12822 | A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒𝐴 ∈ V | ||
Theorem | xnegpnf 12823 | Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
⊢ -𝑒+∞ = -∞ | ||
Theorem | xnegmnf 12824 | Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒-∞ = +∞ | ||
Theorem | rexneg 12825 | Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | ||
Theorem | xneg0 12826 | The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒0 = 0 | ||
Theorem | xnegcl 12827 | Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | ||
Theorem | xnegneg 12828 | Extended real version of negneg 11152. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) | ||
Theorem | xneg11 12829 | Extended real version of neg11 11153. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | xltnegi 12830 | Forward direction of xltneg 12831. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴) | ||
Theorem | xltneg 12831 | Extended real version of ltneg 11356. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴)) | ||
Theorem | xleneg 12832 | Extended real version of leneg 11359. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) | ||
Theorem | xlt0neg1 12833 | Extended real version of lt0neg1 11362. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴)) | ||
Theorem | xlt0neg2 12834 | Extended real version of lt0neg2 11363. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 ↔ -𝑒𝐴 < 0)) | ||
Theorem | xle0neg1 12835 | Extended real version of le0neg1 11364. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴)) | ||
Theorem | xle0neg2 12836 | Extended real version of le0neg2 11365. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ -𝑒𝐴 ≤ 0)) | ||
Theorem | xaddval 12837 | Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))) | ||
Theorem | xaddf 12838 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | ||
Theorem | xmulval 12839 | Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | ||
Theorem | xaddpnf1 12840 | Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) | ||
Theorem | xaddpnf2 12841 | Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) | ||
Theorem | xaddmnf1 12842 | Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | ||
Theorem | xaddmnf2 12843 | Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) | ||
Theorem | pnfaddmnf 12844 | Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (+∞ +𝑒 -∞) = 0 | ||
Theorem | mnfaddpnf 12845 | Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (-∞ +𝑒 +∞) = 0 | ||
Theorem | rexadd 12846 | The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | ||
Theorem | rexsub 12847 | Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 − 𝐵)) | ||
Theorem | rexaddd 12848 | The extended real addition operation when both arguments are real. Deduction version of rexadd 12846. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | ||
Theorem | xnn0xaddcl 12849 | The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.) |
⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*) | ||
Theorem | xaddnemnf 12850 | Closure of extended real addition in the subset ℝ* / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) | ||
Theorem | xaddnepnf 12851 | Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) | ||
Theorem | xnegid 12852 | Extended real version of negid 11149. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 -𝑒𝐴) = 0) | ||
Theorem | xaddcl 12853 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | ||
Theorem | xaddcom 12854 | The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴)) | ||
Theorem | xaddid1 12855 | Extended real version of addid1 11036. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | ||
Theorem | xaddid2 12856 | Extended real version of addid2 11039. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) | ||
Theorem | xaddid1d 12857 | 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 0) = 𝐴) | ||
Theorem | xnn0lem1lt 12858 | Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
Theorem | xnn0lenn0nn0 12859 | An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
⊢ ((𝑀 ∈ ℕ0* ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → 𝑀 ∈ ℕ0) | ||
Theorem | xnn0le2is012 12860 | An extended nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 24-Nov-2021.) |
⊢ ((𝑁 ∈ ℕ0* ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | ||
Theorem | xnn0xadd0 12861 | The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.) |
⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | ||
Theorem | xnegdi 12862 | Extended real version of negdi 11159. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 𝐵) = (-𝑒𝐴 +𝑒 -𝑒𝐵)) | ||
Theorem | xaddass 12863 | Associativity of extended real addition. The correct condition here is "it is not the case that both +∞ and -∞ appear as one of 𝐴, 𝐵, 𝐶, i.e. ¬ {+∞, -∞} ⊆ {𝐴, 𝐵, 𝐶}", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -∞ is not present in 𝐴, 𝐵, 𝐶, and xaddass2 12864, where +∞ is not present. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
Theorem | xaddass2 12864 | Associativity of extended real addition. See xaddass 12863 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ +∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
Theorem | xpncan 12865 | Extended real version of pncan 11108. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴) | ||
Theorem | xnpcan 12866 | Extended real version of npcan 11111. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) | ||
Theorem | xleadd1a 12867 | Extended real version of leadd1 11324; note that the converse implication is not true, unlike the real version (for example 0 < 1 but (1 +𝑒 +∞) ≤ (0 +𝑒 +∞)). (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | ||
Theorem | xleadd2a 12868 | Commuted form of xleadd1a 12867. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) | ||
Theorem | xleadd1 12869 | Weakened version of xleadd1a 12867 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) | ||
Theorem | xltadd1 12870 | Extended real version of ltadd1 11323. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))) | ||
Theorem | xltadd2 12871 | Extended real version of ltadd2 10960. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 +𝑒 𝐴) < (𝐶 +𝑒 𝐵))) | ||
Theorem | xaddge0 12872 | The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 +𝑒 𝐵)) | ||
Theorem | xle2add 12873 | Extended real version of le2add 11338. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷))) | ||
Theorem | xlt2add 12874 | Extended real version of lt2add 11341. Note that ltleadd 11339, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶 ∧ 𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))) | ||
Theorem | xsubge0 12875 | Extended real version of subge0 11369. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) | ||
Theorem | xposdif 12876 | Extended real version of posdif 11349. (Contributed by Mario Carneiro, 24-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))) | ||
Theorem | xlesubadd 12877 | Under certain conditions, the conclusion of lesubadd 11328 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴 ∧ 𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵))) | ||
Theorem | xmullem 12878 | Lemma for rexmul 12885. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞)))) ∧ ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞)))) → 𝐴 ∈ ℝ) | ||
Theorem | xmullem2 12879 | Lemma for xmulneg1 12883. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))) → ¬ (((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))))) | ||
Theorem | xmulcom 12880 | Extended real multiplication is commutative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = (𝐵 ·e 𝐴)) | ||
Theorem | xmul01 12881 | Extended real version of mul01 11035. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) | ||
Theorem | xmul02 12882 | Extended real version of mul02 11034. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (0 ·e 𝐴) = 0) | ||
Theorem | xmulneg1 12883 | Extended real version of mulneg1 11292. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 ·e 𝐵) = -𝑒(𝐴 ·e 𝐵)) | ||
Theorem | xmulneg2 12884 | Extended real version of mulneg2 11293. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e -𝑒𝐵) = -𝑒(𝐴 ·e 𝐵)) | ||
Theorem | rexmul 12885 | The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵)) | ||
Theorem | xmulf 12886 | The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ·e :(ℝ* × ℝ*)⟶ℝ* | ||
Theorem | xmulcl 12887 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
Theorem | xmulpnf1 12888 | Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | ||
Theorem | xmulpnf2 12889 | Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (+∞ ·e 𝐴) = +∞) | ||
Theorem | xmulmnf1 12890 | Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) | ||
Theorem | xmulmnf2 12891 | Multiplication by minus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (-∞ ·e 𝐴) = -∞) | ||
Theorem | xmulpnf1n 12892 | Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) | ||
Theorem | xmulid1 12893 | Extended real version of mulid1 10855. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) | ||
Theorem | xmulid2 12894 | Extended real version of mulid2 10856. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴) | ||
Theorem | xmulm1 12895 | Extended real version of mulm1 11297. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (-1 ·e 𝐴) = -𝑒𝐴) | ||
Theorem | xmulasslem2 12896 | Lemma for xmulass 12901. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) | ||
Theorem | xmulgt0 12897 | Extended real version of mulgt0 10934. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵)) | ||
Theorem | xmulge0 12898 | Extended real version of mulge0 11374. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵)) | ||
Theorem | xmulasslem 12899* | Lemma for xmulass 12901. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝑥 = 𝐷 → (𝜓 ↔ 𝑋 = 𝑌)) & ⊢ (𝑥 = -𝑒𝐷 → (𝜓 ↔ 𝐸 = 𝐹)) & ⊢ (𝜑 → 𝑋 ∈ ℝ*) & ⊢ (𝜑 → 𝑌 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓) & ⊢ (𝜑 → (𝑥 = 0 → 𝜓)) & ⊢ (𝜑 → 𝐸 = -𝑒𝑋) & ⊢ (𝜑 → 𝐹 = -𝑒𝑌) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | xmulasslem3 12900 | Lemma for xmulass 12901. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |