| Metamath
Proof Explorer Theorem List (p. 129 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | uzwo 12801* | Well-ordering principle: any nonempty subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) |
| ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
| Theorem | uzwo2 12802* | Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005.) |
| ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
| Theorem | nnwo 12803* | Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) |
| ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | nnwof 12804* | Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | nnwos 12805* | Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | ||
| Theorem | indstr 12806* | Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
| Theorem | eluznn0 12807 | Membership in a nonnegative upper set of integers implies membership in ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | ||
| Theorem | eluznn 12808 | Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | ||
| Theorem | eluz2b1 12809 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | ||
| Theorem | eluz2gt1 12810 | An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | ||
| Theorem | eluz2b2 12811 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | ||
| Theorem | eluz2b3 12812 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | ||
| Theorem | uz2m1nn 12813 | One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | ||
| Theorem | 1nuz2 12814 | 1 is not in (ℤ≥‘2). (Contributed by Paul Chapman, 21-Nov-2012.) |
| ⊢ ¬ 1 ∈ (ℤ≥‘2) | ||
| Theorem | elnn1uz2 12815 | A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | ||
| Theorem | uz2mulcl 12816 | Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) | ||
| Theorem | indstr2 12817* | Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜒 & ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
| Theorem | uzinfi 12818 | Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
| ⊢ 𝑀 ∈ ℤ ⇒ ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 | ||
| Theorem | nninf 12819 | The infimum of the set of positive integers is one. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
| ⊢ inf(ℕ, ℝ, < ) = 1 | ||
| Theorem | nn0inf 12820 | The infimum of the set of nonnegative integers is zero. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
| ⊢ inf(ℕ0, ℝ, < ) = 0 | ||
| Theorem | infssuzle 12821 | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
| Theorem | infssuzcl 12822 | The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
| ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
| Theorem | ublbneg 12823* | The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) | ||
| Theorem | eqreznegel 12824* | Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) | ||
| Theorem | supminf 12825* | The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) | ||
| Theorem | lbzbi 12826* | If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) | ||
| Theorem | zsupss 12827* | Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 11076.) (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | suprzcl2 12828* | The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl 12545 avoids ax-pre-sup 11076.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
| Theorem | suprzub 12829* | The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
| Theorem | uzsupss 12830* | Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝑍 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
| Theorem | nn01to3 12831 | A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | ||
| Theorem | nn0ge2m1nnALT 12832 | Alternate proof of nn0ge2m1nn 12443: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 12730, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 12443. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
| Theorem | uzwo3 12833* | Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 12802 allows the lower bound 𝐵 to be any real number. See also nnwo 12803 and nnwos 12805. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.) |
| ⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
| Theorem | zmin 12834* | There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) | ||
| Theorem | zmax 12835* | There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) | ||
| Theorem | zbtwnre 12836* | There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ 𝑥 < (𝐴 + 1))) | ||
| Theorem | rebtwnz 12837* | There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
| ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
| Syntax | cq 12838 | Extend class notation to include the class of rationals. |
| class ℚ | ||
| Definition | df-q 12839 | Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 12840 for the relation "is rational". (Contributed by NM, 8-Jan-2002.) |
| ⊢ ℚ = ( / “ (ℤ × ℕ)) | ||
| Theorem | elq 12840* | Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.) |
| ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
| Theorem | qmulz 12841* | If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.) |
| ⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) | ||
| Theorem | znq 12842 | The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) | ||
| Theorem | qre 12843 | A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | ||
| Theorem | zq 12844 | An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
| ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | ||
| Theorem | qred 12845 | A rational number is a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | zssq 12846 | The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.) |
| ⊢ ℤ ⊆ ℚ | ||
| Theorem | nn0ssq 12847 | The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.) |
| ⊢ ℕ0 ⊆ ℚ | ||
| Theorem | nnssq 12848 | The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.) |
| ⊢ ℕ ⊆ ℚ | ||
| Theorem | qssre 12849 | The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.) |
| ⊢ ℚ ⊆ ℝ | ||
| Theorem | qsscn 12850 | The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ℚ ⊆ ℂ | ||
| Theorem | qex 12851 | The set of rational numbers exists. See also qexALT 12854. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℚ ∈ V | ||
| Theorem | nnq 12852 | A positive integer is rational. (Contributed by NM, 17-Nov-2004.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℚ) | ||
| Theorem | qcn 12853 | A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | ||
| Theorem | qexALT 12854 | Alternate proof of qex 12851. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℚ ∈ V | ||
| Theorem | qaddcl 12855 | Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ) | ||
| Theorem | qnegcl 12856 | Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) | ||
| Theorem | qmulcl 12857 | Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ) | ||
| Theorem | qsubcl 12858 | Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 − 𝐵) ∈ ℚ) | ||
| Theorem | qreccl 12859 | Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℚ) | ||
| Theorem | qdivcl 12860 | Closure of division of rationals. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ) | ||
| Theorem | qrevaddcl 12861 | Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.) |
| ⊢ (𝐵 ∈ ℚ → ((𝐴 ∈ ℂ ∧ (𝐴 + 𝐵) ∈ ℚ) ↔ 𝐴 ∈ ℚ)) | ||
| Theorem | nnrecq 12862 | The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.) |
| ⊢ (𝐴 ∈ ℕ → (1 / 𝐴) ∈ ℚ) | ||
| Theorem | irradd 12863 | The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.) |
| ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | irrmul 12864 | The product of an irrational with a nonzero rational is irrational. (Contributed by NM, 7-Nov-2008.) |
| ⊢ ((𝐴 ∈ (ℝ ∖ ℚ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 · 𝐵) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | elpq 12865* | A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
| Theorem | elpqb 12866* | A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
| Theorem | rpnnen1lem2 12867* | Lemma for rpnnen1 12873. (Contributed by Mario Carneiro, 12-May-2013.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) ⇒ ⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ) | ||
| Theorem | rpnnen1lem1 12868* | Lemma for rpnnen1 12873. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) | ||
| Theorem | rpnnen1lem3 12869* | Lemma for rpnnen1 12873. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) | ||
| Theorem | rpnnen1lem4 12870* | Lemma for rpnnen1 12873. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) ∈ ℝ) | ||
| Theorem | rpnnen1lem5 12871* | Lemma for rpnnen1 12873. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥) | ||
| Theorem | rpnnen1lem6 12872* | Lemma for rpnnen1 12873. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) & ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ ℝ ≼ (ℚ ↑m ℕ) | ||
| Theorem | rpnnen1 12873 | One half of rpnnen 16128, where we show an injection from the real numbers to sequences of rational numbers. Specifically, we map a real number 𝑥 to the sequence (𝐹‘𝑥):ℕ⟶ℚ (see rpnnen1lem6 12872) such that ((𝐹‘𝑥)‘𝑘) is the largest rational number with denominator 𝑘 that is strictly less than 𝑥. In this manner, we get a monotonically increasing sequence that converges to 𝑥, and since each sequence converges to a unique real number, this mapping from reals to sequences of rational numbers is injective. Note: The ℕ and ℚ existence hypotheses provide for use with either nnex 12123 and qex 12851, or nnexALT 12119 and qexALT 12854. The proof should not be modified to use any of those 4 theorems. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 16-Jun-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
| ⊢ ℕ ∈ V & ⊢ ℚ ∈ V ⇒ ⊢ ℝ ≼ (ℚ ↑m ℕ) | ||
| Theorem | reexALT 12874 | Alternate proof of reex 11089. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℝ ∈ V | ||
| Theorem | cnref1o 12875* | There is a natural one-to-one mapping from (ℝ × ℝ) to ℂ, where we map 〈𝑥, 𝑦〉 to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of ℂ (see df-c 11004), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ 𝐹:(ℝ × ℝ)–1-1-onto→ℂ | ||
| Theorem | cnexALT 12876 | The set of complex numbers exists. This theorem shows that ax-cnex 11054 is redundant if we assume ax-rep 5215. See also ax-cnex 11054. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂ ∈ V | ||
| Theorem | xrex 12877 | The set of extended reals exists. (Contributed by NM, 24-Dec-2006.) |
| ⊢ ℝ* ∈ V | ||
| Theorem | mpoaddex 12878* | The addition operation is a set. Version of addex 12879 using maps-to notation , which does not require ax-addf 11077. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) ∈ V | ||
| Theorem | addex 12879 | The addition operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ + ∈ V | ||
| Theorem | mpomulex 12880* | The multiplication operation is a set. Version of mulex 12881 using maps-to notation , which does not require ax-mulf 11078. (Contributed by GG, 16-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ∈ V | ||
| Theorem | mulex 12881 | The multiplication operation is a set. (Contributed by NM, 19-Oct-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ · ∈ V | ||
| Syntax | crp 12882 | Extend class notation to include the class of positive reals. |
| class ℝ+ | ||
| Definition | df-rp 12883 | Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
| ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | ||
| Theorem | elrp 12884 | Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | ||
| Theorem | elrpii 12885 | Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 𝐴 ∈ ℝ+ | ||
| Theorem | 1rp 12886 | 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
| ⊢ 1 ∈ ℝ+ | ||
| Theorem | 2rp 12887 | 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ 2 ∈ ℝ+ | ||
| Theorem | 3rp 12888 | 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 3 ∈ ℝ+ | ||
| Theorem | 5rp 12889 | 5 is a positive real. (Contributed by SN, 26-Aug-2025.) |
| ⊢ 5 ∈ ℝ+ | ||
| Theorem | rpssre 12890 | The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
| ⊢ ℝ+ ⊆ ℝ | ||
| Theorem | rpre 12891 | A positive real is a real. (Contributed by NM, 27-Oct-2007.) (Proof shortened by Steven Nguyen, 8-Oct-2022.) |
| ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | ||
| Theorem | rpxr 12892 | A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | ||
| Theorem | rpcn 12893 | A positive real is a complex number. (Contributed by NM, 11-Nov-2008.) |
| ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | ||
| Theorem | nnrp 12894 | A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) | ||
| Theorem | rpgt0 12895 | A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.) |
| ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | ||
| Theorem | rpge0 12896 | A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.) |
| ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) | ||
| Theorem | rpregt0 12897 | A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | ||
| Theorem | rprege0 12898 | A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | ||
| Theorem | rpne0 12899 | A positive real is nonzero. (Contributed by NM, 18-Jul-2008.) |
| ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | ||
| Theorem | rprene0 12900 | A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.) |
| ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |