Home | Metamath
Proof Explorer Theorem List (p. 129 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | xrltnsym2 12801 | 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) | ||
Theorem | xrlttri 12802 | Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 10876 or axlttri 10977. (Contributed by NM, 14-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | xrlttr 12803 | Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | xrltso 12804 | 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
⊢ < Or ℝ* | ||
Theorem | xrlttri2 12805 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | xrlttri3 12806 | Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
Theorem | xrleloe 12807 | 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
Theorem | xrleltne 12808 | 'Less than or equal to' implies 'less than' is not 'equals', for extended reals. (Contributed by NM, 9-Feb-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
Theorem | xrltlen 12809 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
Theorem | dfle2 12810 | Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ ≤ = ( < ∪ ( I ↾ ℝ*)) | ||
Theorem | dflt2 12811 | Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.) |
⊢ < = ( ≤ ∖ I ) | ||
Theorem | xrltle 12812 | 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | ||
Theorem | xrltled 12813 | 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 12812. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | xrleid 12814 | 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.) |
⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | ||
Theorem | xrleidd 12815 | 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 12814. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐴) | ||
Theorem | xrletri 12816 | Trichotomy law for extended reals. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
Theorem | xrletri3 12817 | Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
Theorem | xrletrid 12818 | Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | xrlelttr 12819 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | xrltletr 12820 | Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | ||
Theorem | xrletr 12821 | Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | ||
Theorem | xrlttrd 12822 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
Theorem | xrlelttrd 12823 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
Theorem | xrltletrd 12824 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
Theorem | xrletrd 12825 | Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
Theorem | xrltne 12826 | 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | ||
Theorem | nltpnft 12827 | An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | ||
Theorem | xgepnf 12828 | An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ 𝐴 = +∞)) | ||
Theorem | ngtmnft 12829 | An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | ||
Theorem | xlemnf 12830 | An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ 𝐴 = -∞)) | ||
Theorem | xrrebnd 12831 | An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴 ∧ 𝐴 < +∞))) | ||
Theorem | xrre 12832 | A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (-∞ < 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
Theorem | xrre2 12833 | An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) | ||
Theorem | xrre3 12834 | A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < +∞)) → 𝐴 ∈ ℝ) | ||
Theorem | ge0gtmnf 12835 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | ||
Theorem | ge0nemnf 12836 | A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) | ||
Theorem | xrrege0 12837 | A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℝ) | ||
Theorem | xrmax1 12838 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | xrmax2 12839 | An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | xrmin1 12840 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
Theorem | xrmin2 12841 | The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
Theorem | xrmaxeq 12842 | The maximum of two extended reals is equal to the first if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐴) | ||
Theorem | xrmineq 12843 | The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) | ||
Theorem | xrmaxlt 12844 | Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
Theorem | xrltmin 12845 | Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
Theorem | xrmaxle 12846 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
Theorem | xrlemin 12847 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
Theorem | max1 12848 | A number is less than or equal to the maximum of it and another. See also max1ALT 12849. (Contributed by NM, 3-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | max1ALT 12849 | A number is less than or equal to the maximum of it and another. This version of max1 12848 omits the 𝐵 ∈ ℝ antecedent. Although it doesn't exploit undefined behavior, it is still considered poor style, and the use of max1 12848 is preferred. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 3-Apr-2005.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | max2 12850 | A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | 2resupmax 12851 | The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) | ||
Theorem | min1 12852 | The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) | ||
Theorem | min2 12853 | The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | ||
Theorem | maxle 12854 | Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by NM, 29-Sep-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) | ||
Theorem | lemin 12855 | Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) | ||
Theorem | maxlt 12856 | Two ways of saying the maximum of two numbers is less than a third. (Contributed by NM, 3-Aug-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴 ≤ 𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) | ||
Theorem | ltmin 12857 | Two ways of saying a number is less than the minimum of two others. (Contributed by NM, 1-Sep-2006.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < if(𝐵 ≤ 𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) | ||
Theorem | lemaxle 12858 | A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.) |
⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) | ||
Theorem | max0sub 12859 | Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) | ||
Theorem | ifle 12860 | An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) | ||
Theorem | z2ge 12861* | There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) | ||
Theorem | qbtwnre 12862* | The rational numbers are dense in ℝ: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
Theorem | qbtwnxr 12863* | The rational numbers are dense in ℝ*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | ||
Theorem | qsqueeze 12864* | If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℚ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) | ||
Theorem | qextltlem 12865* | Lemma for qextlt 12866 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | ||
Theorem | qextlt 12866* | An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) | ||
Theorem | qextle 12867* | An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) | ||
Theorem | xralrple 12868* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) | ||
Theorem | alrple 12869* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) | ||
Theorem | xnegeq 12870 | Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | ||
Theorem | xnegex 12871 | A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒𝐴 ∈ V | ||
Theorem | xnegpnf 12872 | Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
⊢ -𝑒+∞ = -∞ | ||
Theorem | xnegmnf 12873 | Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒-∞ = +∞ | ||
Theorem | rexneg 12874 | Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | ||
Theorem | xneg0 12875 | The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ -𝑒0 = 0 | ||
Theorem | xnegcl 12876 | Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | ||
Theorem | xnegneg 12877 | Extended real version of negneg 11201. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) | ||
Theorem | xneg11 12878 | Extended real version of neg11 11202. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | xltnegi 12879 | Forward direction of xltneg 12880. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴) | ||
Theorem | xltneg 12880 | Extended real version of ltneg 11405. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴)) | ||
Theorem | xleneg 12881 | Extended real version of leneg 11408. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) | ||
Theorem | xlt0neg1 12882 | Extended real version of lt0neg1 11411. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 < 0 ↔ 0 < -𝑒𝐴)) | ||
Theorem | xlt0neg2 12883 | Extended real version of lt0neg2 11412. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (0 < 𝐴 ↔ -𝑒𝐴 < 0)) | ||
Theorem | xle0neg1 12884 | Extended real version of le0neg1 11413. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ 0 ↔ 0 ≤ -𝑒𝐴)) | ||
Theorem | xle0neg2 12885 | Extended real version of le0neg2 11414. (Contributed by Mario Carneiro, 9-Sep-2015.) |
⊢ (𝐴 ∈ ℝ* → (0 ≤ 𝐴 ↔ -𝑒𝐴 ≤ 0)) | ||
Theorem | xaddval 12886 | Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))) | ||
Theorem | xaddf 12887 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | ||
Theorem | xmulval 12888 | Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) = if((𝐴 = 0 ∨ 𝐵 = 0), 0, if((((0 < 𝐵 ∧ 𝐴 = +∞) ∨ (𝐵 < 0 ∧ 𝐴 = -∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = +∞) ∨ (𝐴 < 0 ∧ 𝐵 = -∞))), +∞, if((((0 < 𝐵 ∧ 𝐴 = -∞) ∨ (𝐵 < 0 ∧ 𝐴 = +∞)) ∨ ((0 < 𝐴 ∧ 𝐵 = -∞) ∨ (𝐴 < 0 ∧ 𝐵 = +∞))), -∞, (𝐴 · 𝐵))))) | ||
Theorem | xaddpnf1 12889 | Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) | ||
Theorem | xaddpnf2 12890 | Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞) | ||
Theorem | xaddmnf1 12891 | Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | ||
Theorem | xaddmnf2 12892 | Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞) | ||
Theorem | pnfaddmnf 12893 | Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (+∞ +𝑒 -∞) = 0 | ||
Theorem | mnfaddpnf 12894 | Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (-∞ +𝑒 +∞) = 0 | ||
Theorem | rexadd 12895 | The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | ||
Theorem | rexsub 12896 | Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 − 𝐵)) | ||
Theorem | rexaddd 12897 | The extended real addition operation when both arguments are real. Deduction version of rexadd 12895. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | ||
Theorem | xnn0xaddcl 12898 | The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.) |
⊢ ((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*) | ||
Theorem | xaddnemnf 12899 | Closure of extended real addition in the subset ℝ* / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) | ||
Theorem | xaddnepnf 12900 | Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |