| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12855 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | 1 | ffvelcdmi 7073 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
| 3 | 2 | elpwid 4584 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 4 | 1 | fdmi 6717 | . . 3 ⊢ dom ℤ≥ = ℤ |
| 5 | 3, 4 | eleq2s 2852 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 6 | ndmfv 6911 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 0ss 4375 | . . 3 ⊢ ∅ ⊆ ℤ | |
| 8 | 6, 7 | eqsstrdi 4003 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 dom cdm 5654 ‘cfv 6531 ℤcz 12588 ℤ≥cuz 12852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-neg 11469 df-z 12589 df-uz 12853 |
| This theorem is referenced by: uzssre 12874 uzwo 12927 uzwo2 12928 infssuzle 12947 infssuzcl 12948 uzsupss 12956 uzwo3 12959 uzsup 13880 cau3 15374 caubnd 15377 limsupgre 15497 rlimclim 15562 climz 15565 climaddc1 15651 climmulc2 15653 climsubc1 15654 climsubc2 15655 climlec2 15675 isercolllem1 15681 isercolllem2 15682 isercoll 15684 caurcvg 15693 caucvg 15695 iseraltlem1 15698 iseraltlem2 15699 iseraltlem3 15700 summolem2a 15731 summolem2 15732 zsum 15734 fsumcvg3 15745 climfsum 15836 divcnvshft 15871 clim2prod 15904 ntrivcvg 15913 ntrivcvgfvn0 15915 ntrivcvgtail 15916 ntrivcvgmullem 15917 ntrivcvgmul 15918 prodrblem 15945 prodmolem2a 15950 prodmolem2 15951 zprod 15953 4sqlem11 16975 gsumval3 19888 lmbrf 23198 lmres 23238 uzrest 23835 uzfbas 23836 lmflf 23943 lmmbrf 25214 iscau4 25231 iscauf 25232 caucfil 25235 lmclimf 25256 mbfsup 25617 mbflimsup 25619 ig1pdvds 26137 ulmval 26341 ulmpm 26344 2sqlem6 27386 ballotlemfc0 34525 ballotlemfcc 34526 ballotlemiex 34534 ballotlemsima 34548 ballotlemrv2 34554 breprexplemc 34664 erdszelem4 35216 erdszelem8 35220 caures 37784 diophin 42795 irrapxlem1 42845 monotuz 42965 hashnzfzclim 44346 uzmptshftfval 44370 uzct 45087 uzfissfz 45353 ssuzfz 45376 uzssre2 45434 uzssz2 45483 uzinico2 45590 fnlimfvre 45703 climleltrp 45705 limsupequzmpt2 45747 limsupequzlem 45751 liminfequzmpt2 45820 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 sge0isum 46456 smflimlem1 46800 smflimlem2 46801 smflim 46806 |
| Copyright terms: Public domain | W3C validator |