![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | β’ (β€β₯βπ) β β€ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12825 | . . . . 5 β’ β€β₯:β€βΆπ« β€ | |
2 | 1 | ffvelcdmi 7086 | . . . 4 β’ (π β β€ β (β€β₯βπ) β π« β€) |
3 | 2 | elpwid 4612 | . . 3 β’ (π β β€ β (β€β₯βπ) β β€) |
4 | 1 | fdmi 6730 | . . 3 β’ dom β€β₯ = β€ |
5 | 3, 4 | eleq2s 2852 | . 2 β’ (π β dom β€β₯ β (β€β₯βπ) β β€) |
6 | ndmfv 6927 | . . 3 β’ (Β¬ π β dom β€β₯ β (β€β₯βπ) = β ) | |
7 | 0ss 4397 | . . 3 β’ β β β€ | |
8 | 6, 7 | eqsstrdi 4037 | . 2 β’ (Β¬ π β dom β€β₯ β (β€β₯βπ) β β€) |
9 | 5, 8 | pm2.61i 182 | 1 β’ (β€β₯βπ) β β€ |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wcel 2107 β wss 3949 β c0 4323 π« cpw 4603 dom cdm 5677 βcfv 6544 β€cz 12558 β€β₯cuz 12822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-neg 11447 df-z 12559 df-uz 12823 |
This theorem is referenced by: uzssre 12844 uzwo 12895 uzwo2 12896 infssuzle 12915 infssuzcl 12916 uzsupss 12924 uzwo3 12927 uzsup 13828 cau3 15302 caubnd 15305 limsupgre 15425 rlimclim 15490 climz 15493 climaddc1 15579 climmulc2 15581 climsubc1 15582 climsubc2 15583 climlec2 15605 isercolllem1 15611 isercolllem2 15612 isercoll 15614 caurcvg 15623 caucvg 15625 iseraltlem1 15628 iseraltlem2 15629 iseraltlem3 15630 summolem2a 15661 summolem2 15662 zsum 15664 fsumcvg3 15675 climfsum 15766 divcnvshft 15801 clim2prod 15834 ntrivcvg 15843 ntrivcvgfvn0 15845 ntrivcvgtail 15846 ntrivcvgmullem 15847 ntrivcvgmul 15848 prodrblem 15873 prodmolem2a 15878 prodmolem2 15879 zprod 15881 4sqlem11 16888 gsumval3 19775 lmbrf 22764 lmres 22804 uzrest 23401 uzfbas 23402 lmflf 23509 lmmbrf 24779 iscau4 24796 iscauf 24797 caucfil 24800 lmclimf 24821 mbfsup 25181 mbflimsup 25183 ig1pdvds 25694 ulmval 25892 ulmpm 25895 2sqlem6 26926 ballotlemfc0 33491 ballotlemfcc 33492 ballotlemiex 33500 ballotlemsima 33514 ballotlemrv2 33520 breprexplemc 33644 erdszelem4 34185 erdszelem8 34189 caures 36628 diophin 41510 irrapxlem1 41560 monotuz 41680 hashnzfzclim 43081 uzmptshftfval 43105 uzct 43750 uzfissfz 44036 ssuzfz 44059 uzssre2 44117 uzssz2 44166 uzinico2 44275 fnlimfvre 44390 climleltrp 44392 limsupequzmpt2 44434 limsupequzlem 44438 liminfequzmpt2 44507 ioodvbdlimc1lem2 44648 ioodvbdlimc2lem 44650 sge0isum 45143 smflimlem1 45487 smflimlem2 45488 smflim 45493 |
Copyright terms: Public domain | W3C validator |