![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12878 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | 1 | ffvelcdmi 7102 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
3 | 2 | elpwid 4613 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
4 | 1 | fdmi 6747 | . . 3 ⊢ dom ℤ≥ = ℤ |
5 | 3, 4 | eleq2s 2856 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
6 | ndmfv 6941 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
7 | 0ss 4405 | . . 3 ⊢ ∅ ⊆ ℤ | |
8 | 6, 7 | eqsstrdi 4049 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 ⊆ wss 3962 ∅c0 4338 𝒫 cpw 4604 dom cdm 5688 ‘cfv 6562 ℤcz 12610 ℤ≥cuz 12875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-neg 11492 df-z 12611 df-uz 12876 |
This theorem is referenced by: uzssre 12897 uzwo 12950 uzwo2 12951 infssuzle 12970 infssuzcl 12971 uzsupss 12979 uzwo3 12982 uzsup 13899 cau3 15390 caubnd 15393 limsupgre 15513 rlimclim 15578 climz 15581 climaddc1 15667 climmulc2 15669 climsubc1 15670 climsubc2 15671 climlec2 15691 isercolllem1 15697 isercolllem2 15698 isercoll 15700 caurcvg 15709 caucvg 15711 iseraltlem1 15714 iseraltlem2 15715 iseraltlem3 15716 summolem2a 15747 summolem2 15748 zsum 15750 fsumcvg3 15761 climfsum 15852 divcnvshft 15887 clim2prod 15920 ntrivcvg 15929 ntrivcvgfvn0 15931 ntrivcvgtail 15932 ntrivcvgmullem 15933 ntrivcvgmul 15934 prodrblem 15961 prodmolem2a 15966 prodmolem2 15967 zprod 15969 4sqlem11 16988 gsumval3 19939 lmbrf 23283 lmres 23323 uzrest 23920 uzfbas 23921 lmflf 24028 lmmbrf 25309 iscau4 25326 iscauf 25327 caucfil 25330 lmclimf 25351 mbfsup 25712 mbflimsup 25714 ig1pdvds 26233 ulmval 26437 ulmpm 26440 2sqlem6 27481 ballotlemfc0 34473 ballotlemfcc 34474 ballotlemiex 34482 ballotlemsima 34496 ballotlemrv2 34502 breprexplemc 34625 erdszelem4 35178 erdszelem8 35182 caures 37746 diophin 42759 irrapxlem1 42809 monotuz 42929 hashnzfzclim 44317 uzmptshftfval 44341 uzct 45002 uzfissfz 45275 ssuzfz 45298 uzssre2 45356 uzssz2 45405 uzinico2 45514 fnlimfvre 45629 climleltrp 45631 limsupequzmpt2 45673 limsupequzlem 45677 liminfequzmpt2 45746 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 sge0isum 46382 smflimlem1 46726 smflimlem2 46727 smflim 46732 |
Copyright terms: Public domain | W3C validator |