Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12514 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | 1 | ffvelrni 6942 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
3 | 2 | elpwid 4541 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
4 | 1 | fdmi 6596 | . . 3 ⊢ dom ℤ≥ = ℤ |
5 | 3, 4 | eleq2s 2857 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
6 | ndmfv 6786 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
7 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ ℤ | |
8 | 6, 7 | eqsstrdi 3971 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 dom cdm 5580 ‘cfv 6418 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: uzssre 12533 uzwo 12580 uzwo2 12581 infssuzle 12600 infssuzcl 12601 uzsupss 12609 uzwo3 12612 uzsup 13511 cau3 14995 caubnd 14998 limsupgre 15118 rlimclim 15183 climz 15186 climaddc1 15272 climmulc2 15274 climsubc1 15275 climsubc2 15276 climlec2 15298 isercolllem1 15304 isercolllem2 15305 isercoll 15307 caurcvg 15316 caucvg 15318 iseraltlem1 15321 iseraltlem2 15322 iseraltlem3 15323 summolem2a 15355 summolem2 15356 zsum 15358 fsumcvg3 15369 climfsum 15460 divcnvshft 15495 clim2prod 15528 ntrivcvg 15537 ntrivcvgfvn0 15539 ntrivcvgtail 15540 ntrivcvgmullem 15541 ntrivcvgmul 15542 prodrblem 15567 prodmolem2a 15572 prodmolem2 15573 zprod 15575 4sqlem11 16584 gsumval3 19423 lmbrf 22319 lmres 22359 uzrest 22956 uzfbas 22957 lmflf 23064 lmmbrf 24331 iscau4 24348 iscauf 24349 caucfil 24352 lmclimf 24373 mbfsup 24733 mbflimsup 24735 ig1pdvds 25246 ulmval 25444 ulmpm 25447 2sqlem6 26476 ballotlemfc0 32359 ballotlemfcc 32360 ballotlemiex 32368 ballotlemsima 32382 ballotlemrv2 32388 breprexplemc 32512 erdszelem4 33056 erdszelem8 33060 caures 35845 diophin 40510 irrapxlem1 40560 monotuz 40679 hashnzfzclim 41829 uzmptshftfval 41853 uzct 42500 uzfissfz 42755 ssuzfz 42778 uzssre2 42837 uzssz2 42886 uzinico2 42990 fnlimfvre 43105 climleltrp 43107 limsupequzmpt2 43149 limsupequzlem 43153 liminfequzmpt2 43222 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 sge0isum 43855 smflimlem1 44193 smflimlem2 44194 smflim 44199 |
Copyright terms: Public domain | W3C validator |