| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12796 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | 1 | ffvelcdmi 7055 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
| 3 | 2 | elpwid 4572 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 4 | 1 | fdmi 6699 | . . 3 ⊢ dom ℤ≥ = ℤ |
| 5 | 3, 4 | eleq2s 2846 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 6 | ndmfv 6893 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ ℤ | |
| 8 | 6, 7 | eqsstrdi 3991 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 dom cdm 5638 ‘cfv 6511 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: uzssre 12815 uzwo 12870 uzwo2 12871 infssuzle 12890 infssuzcl 12891 uzsupss 12899 uzwo3 12902 uzsup 13825 cau3 15322 caubnd 15325 limsupgre 15447 rlimclim 15512 climz 15515 climaddc1 15601 climmulc2 15603 climsubc1 15604 climsubc2 15605 climlec2 15625 isercolllem1 15631 isercolllem2 15632 isercoll 15634 caurcvg 15643 caucvg 15645 iseraltlem1 15648 iseraltlem2 15649 iseraltlem3 15650 summolem2a 15681 summolem2 15682 zsum 15684 fsumcvg3 15695 climfsum 15786 divcnvshft 15821 clim2prod 15854 ntrivcvg 15863 ntrivcvgfvn0 15865 ntrivcvgtail 15866 ntrivcvgmullem 15867 ntrivcvgmul 15868 prodrblem 15895 prodmolem2a 15900 prodmolem2 15901 zprod 15903 4sqlem11 16926 gsumval3 19837 lmbrf 23147 lmres 23187 uzrest 23784 uzfbas 23785 lmflf 23892 lmmbrf 25162 iscau4 25179 iscauf 25180 caucfil 25183 lmclimf 25204 mbfsup 25565 mbflimsup 25567 ig1pdvds 26085 ulmval 26289 ulmpm 26292 2sqlem6 27334 ballotlemfc0 34484 ballotlemfcc 34485 ballotlemiex 34493 ballotlemsima 34507 ballotlemrv2 34513 breprexplemc 34623 erdszelem4 35181 erdszelem8 35185 caures 37754 diophin 42760 irrapxlem1 42810 monotuz 42930 hashnzfzclim 44311 uzmptshftfval 44335 uzct 45057 uzfissfz 45322 ssuzfz 45345 uzssre2 45403 uzssz2 45452 uzinico2 45559 fnlimfvre 45672 climleltrp 45674 limsupequzmpt2 45716 limsupequzlem 45720 liminfequzmpt2 45789 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 sge0isum 46425 smflimlem1 46769 smflimlem2 46770 smflim 46775 |
| Copyright terms: Public domain | W3C validator |