| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12772 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | 1 | ffvelcdmi 7037 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
| 3 | 2 | elpwid 4568 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 4 | 1 | fdmi 6681 | . . 3 ⊢ dom ℤ≥ = ℤ |
| 5 | 3, 4 | eleq2s 2846 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 6 | ndmfv 6875 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 0ss 4359 | . . 3 ⊢ ∅ ⊆ ℤ | |
| 8 | 6, 7 | eqsstrdi 3988 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 dom cdm 5631 ‘cfv 6499 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: uzssre 12791 uzwo 12846 uzwo2 12847 infssuzle 12866 infssuzcl 12867 uzsupss 12875 uzwo3 12878 uzsup 13801 cau3 15298 caubnd 15301 limsupgre 15423 rlimclim 15488 climz 15491 climaddc1 15577 climmulc2 15579 climsubc1 15580 climsubc2 15581 climlec2 15601 isercolllem1 15607 isercolllem2 15608 isercoll 15610 caurcvg 15619 caucvg 15621 iseraltlem1 15624 iseraltlem2 15625 iseraltlem3 15626 summolem2a 15657 summolem2 15658 zsum 15660 fsumcvg3 15671 climfsum 15762 divcnvshft 15797 clim2prod 15830 ntrivcvg 15839 ntrivcvgfvn0 15841 ntrivcvgtail 15842 ntrivcvgmullem 15843 ntrivcvgmul 15844 prodrblem 15871 prodmolem2a 15876 prodmolem2 15877 zprod 15879 4sqlem11 16902 gsumval3 19821 lmbrf 23180 lmres 23220 uzrest 23817 uzfbas 23818 lmflf 23925 lmmbrf 25195 iscau4 25212 iscauf 25213 caucfil 25216 lmclimf 25237 mbfsup 25598 mbflimsup 25600 ig1pdvds 26118 ulmval 26322 ulmpm 26325 2sqlem6 27367 ballotlemfc0 34477 ballotlemfcc 34478 ballotlemiex 34486 ballotlemsima 34500 ballotlemrv2 34506 breprexplemc 34616 erdszelem4 35174 erdszelem8 35178 caures 37747 diophin 42753 irrapxlem1 42803 monotuz 42923 hashnzfzclim 44304 uzmptshftfval 44328 uzct 45050 uzfissfz 45315 ssuzfz 45338 uzssre2 45396 uzssz2 45445 uzinico2 45552 fnlimfvre 45665 climleltrp 45667 limsupequzmpt2 45709 limsupequzlem 45713 liminfequzmpt2 45782 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 sge0isum 46418 smflimlem1 46762 smflimlem2 46763 smflim 46768 |
| Copyright terms: Public domain | W3C validator |