| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12735 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | 1 | ffvelcdmi 7016 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
| 3 | 2 | elpwid 4556 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 4 | 1 | fdmi 6662 | . . 3 ⊢ dom ℤ≥ = ℤ |
| 5 | 3, 4 | eleq2s 2849 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 6 | ndmfv 6854 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ ℤ | |
| 8 | 6, 7 | eqsstrdi 3974 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 dom cdm 5614 ‘cfv 6481 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: uzssre 12754 uzwo 12809 uzwo2 12810 infssuzle 12829 infssuzcl 12830 uzsupss 12838 uzwo3 12841 uzsup 13767 cau3 15263 caubnd 15266 limsupgre 15388 rlimclim 15453 climz 15456 climaddc1 15542 climmulc2 15544 climsubc1 15545 climsubc2 15546 climlec2 15566 isercolllem1 15572 isercolllem2 15573 isercoll 15575 caurcvg 15584 caucvg 15586 iseraltlem1 15589 iseraltlem2 15590 iseraltlem3 15591 summolem2a 15622 summolem2 15623 zsum 15625 fsumcvg3 15636 climfsum 15727 divcnvshft 15762 clim2prod 15795 ntrivcvg 15804 ntrivcvgfvn0 15806 ntrivcvgtail 15807 ntrivcvgmullem 15808 ntrivcvgmul 15809 prodrblem 15836 prodmolem2a 15841 prodmolem2 15842 zprod 15844 4sqlem11 16867 gsumval3 19819 lmbrf 23175 lmres 23215 uzrest 23812 uzfbas 23813 lmflf 23920 lmmbrf 25189 iscau4 25206 iscauf 25207 caucfil 25210 lmclimf 25231 mbfsup 25592 mbflimsup 25594 ig1pdvds 26112 ulmval 26316 ulmpm 26319 2sqlem6 27361 ballotlemfc0 34506 ballotlemfcc 34507 ballotlemiex 34515 ballotlemsima 34529 ballotlemrv2 34535 breprexplemc 34645 erdszelem4 35238 erdszelem8 35242 caures 37810 diophin 42875 irrapxlem1 42925 monotuz 43044 hashnzfzclim 44425 uzmptshftfval 44449 uzct 45170 uzfissfz 45435 ssuzfz 45458 uzssre2 45515 uzssz2 45564 uzinico2 45671 fnlimfvre 45782 climleltrp 45784 limsupequzmpt2 45826 limsupequzlem 45830 liminfequzmpt2 45899 ioodvbdlimc1lem2 46040 ioodvbdlimc2lem 46042 sge0isum 46535 smflimlem1 46879 smflimlem2 46880 smflim 46885 |
| Copyright terms: Public domain | W3C validator |