| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12803 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | 1 | ffvelcdmi 7058 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
| 3 | 2 | elpwid 4575 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 4 | 1 | fdmi 6702 | . . 3 ⊢ dom ℤ≥ = ℤ |
| 5 | 3, 4 | eleq2s 2847 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 6 | ndmfv 6896 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ ℤ | |
| 8 | 6, 7 | eqsstrdi 3994 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 dom cdm 5641 ‘cfv 6514 ℤcz 12536 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-neg 11415 df-z 12537 df-uz 12801 |
| This theorem is referenced by: uzssre 12822 uzwo 12877 uzwo2 12878 infssuzle 12897 infssuzcl 12898 uzsupss 12906 uzwo3 12909 uzsup 13832 cau3 15329 caubnd 15332 limsupgre 15454 rlimclim 15519 climz 15522 climaddc1 15608 climmulc2 15610 climsubc1 15611 climsubc2 15612 climlec2 15632 isercolllem1 15638 isercolllem2 15639 isercoll 15641 caurcvg 15650 caucvg 15652 iseraltlem1 15655 iseraltlem2 15656 iseraltlem3 15657 summolem2a 15688 summolem2 15689 zsum 15691 fsumcvg3 15702 climfsum 15793 divcnvshft 15828 clim2prod 15861 ntrivcvg 15870 ntrivcvgfvn0 15872 ntrivcvgtail 15873 ntrivcvgmullem 15874 ntrivcvgmul 15875 prodrblem 15902 prodmolem2a 15907 prodmolem2 15908 zprod 15910 4sqlem11 16933 gsumval3 19844 lmbrf 23154 lmres 23194 uzrest 23791 uzfbas 23792 lmflf 23899 lmmbrf 25169 iscau4 25186 iscauf 25187 caucfil 25190 lmclimf 25211 mbfsup 25572 mbflimsup 25574 ig1pdvds 26092 ulmval 26296 ulmpm 26299 2sqlem6 27341 ballotlemfc0 34491 ballotlemfcc 34492 ballotlemiex 34500 ballotlemsima 34514 ballotlemrv2 34520 breprexplemc 34630 erdszelem4 35188 erdszelem8 35192 caures 37761 diophin 42767 irrapxlem1 42817 monotuz 42937 hashnzfzclim 44318 uzmptshftfval 44342 uzct 45064 uzfissfz 45329 ssuzfz 45352 uzssre2 45410 uzssz2 45459 uzinico2 45566 fnlimfvre 45679 climleltrp 45681 limsupequzmpt2 45723 limsupequzlem 45727 liminfequzmpt2 45796 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 sge0isum 46432 smflimlem1 46776 smflimlem2 46777 smflim 46782 |
| Copyright terms: Public domain | W3C validator |