![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | β’ (β€β₯βπ) β β€ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12822 | . . . . 5 β’ β€β₯:β€βΆπ« β€ | |
2 | 1 | ffvelcdmi 7083 | . . . 4 β’ (π β β€ β (β€β₯βπ) β π« β€) |
3 | 2 | elpwid 4611 | . . 3 β’ (π β β€ β (β€β₯βπ) β β€) |
4 | 1 | fdmi 6727 | . . 3 β’ dom β€β₯ = β€ |
5 | 3, 4 | eleq2s 2852 | . 2 β’ (π β dom β€β₯ β (β€β₯βπ) β β€) |
6 | ndmfv 6924 | . . 3 β’ (Β¬ π β dom β€β₯ β (β€β₯βπ) = β ) | |
7 | 0ss 4396 | . . 3 β’ β β β€ | |
8 | 6, 7 | eqsstrdi 4036 | . 2 β’ (Β¬ π β dom β€β₯ β (β€β₯βπ) β β€) |
9 | 5, 8 | pm2.61i 182 | 1 β’ (β€β₯βπ) β β€ |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wcel 2107 β wss 3948 β c0 4322 π« cpw 4602 dom cdm 5676 βcfv 6541 β€cz 12555 β€β₯cuz 12819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-cnex 11163 ax-resscn 11164 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7409 df-neg 11444 df-z 12556 df-uz 12820 |
This theorem is referenced by: uzssre 12841 uzwo 12892 uzwo2 12893 infssuzle 12912 infssuzcl 12913 uzsupss 12921 uzwo3 12924 uzsup 13825 cau3 15299 caubnd 15302 limsupgre 15422 rlimclim 15487 climz 15490 climaddc1 15576 climmulc2 15578 climsubc1 15579 climsubc2 15580 climlec2 15602 isercolllem1 15608 isercolllem2 15609 isercoll 15611 caurcvg 15620 caucvg 15622 iseraltlem1 15625 iseraltlem2 15626 iseraltlem3 15627 summolem2a 15658 summolem2 15659 zsum 15661 fsumcvg3 15672 climfsum 15763 divcnvshft 15798 clim2prod 15831 ntrivcvg 15840 ntrivcvgfvn0 15842 ntrivcvgtail 15843 ntrivcvgmullem 15844 ntrivcvgmul 15845 prodrblem 15870 prodmolem2a 15875 prodmolem2 15876 zprod 15878 4sqlem11 16885 gsumval3 19770 lmbrf 22756 lmres 22796 uzrest 23393 uzfbas 23394 lmflf 23501 lmmbrf 24771 iscau4 24788 iscauf 24789 caucfil 24792 lmclimf 24813 mbfsup 25173 mbflimsup 25175 ig1pdvds 25686 ulmval 25884 ulmpm 25887 2sqlem6 26916 ballotlemfc0 33480 ballotlemfcc 33481 ballotlemiex 33489 ballotlemsima 33503 ballotlemrv2 33509 breprexplemc 33633 erdszelem4 34174 erdszelem8 34178 caures 36617 diophin 41496 irrapxlem1 41546 monotuz 41666 hashnzfzclim 43067 uzmptshftfval 43091 uzct 43736 uzfissfz 44023 ssuzfz 44046 uzssre2 44104 uzssz2 44153 uzinico2 44262 fnlimfvre 44377 climleltrp 44379 limsupequzmpt2 44421 limsupequzlem 44425 liminfequzmpt2 44494 ioodvbdlimc1lem2 44635 ioodvbdlimc2lem 44637 sge0isum 45130 smflimlem1 45474 smflimlem2 45475 smflim 45480 |
Copyright terms: Public domain | W3C validator |