Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12585 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | 1 | ffvelrni 6960 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
3 | 2 | elpwid 4544 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
4 | 1 | fdmi 6612 | . . 3 ⊢ dom ℤ≥ = ℤ |
5 | 3, 4 | eleq2s 2857 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
6 | ndmfv 6804 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
7 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ ℤ | |
8 | 6, 7 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 dom cdm 5589 ‘cfv 6433 ℤcz 12319 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-neg 11208 df-z 12320 df-uz 12583 |
This theorem is referenced by: uzssre 12604 uzwo 12651 uzwo2 12652 infssuzle 12671 infssuzcl 12672 uzsupss 12680 uzwo3 12683 uzsup 13583 cau3 15067 caubnd 15070 limsupgre 15190 rlimclim 15255 climz 15258 climaddc1 15344 climmulc2 15346 climsubc1 15347 climsubc2 15348 climlec2 15370 isercolllem1 15376 isercolllem2 15377 isercoll 15379 caurcvg 15388 caucvg 15390 iseraltlem1 15393 iseraltlem2 15394 iseraltlem3 15395 summolem2a 15427 summolem2 15428 zsum 15430 fsumcvg3 15441 climfsum 15532 divcnvshft 15567 clim2prod 15600 ntrivcvg 15609 ntrivcvgfvn0 15611 ntrivcvgtail 15612 ntrivcvgmullem 15613 ntrivcvgmul 15614 prodrblem 15639 prodmolem2a 15644 prodmolem2 15645 zprod 15647 4sqlem11 16656 gsumval3 19508 lmbrf 22411 lmres 22451 uzrest 23048 uzfbas 23049 lmflf 23156 lmmbrf 24426 iscau4 24443 iscauf 24444 caucfil 24447 lmclimf 24468 mbfsup 24828 mbflimsup 24830 ig1pdvds 25341 ulmval 25539 ulmpm 25542 2sqlem6 26571 ballotlemfc0 32459 ballotlemfcc 32460 ballotlemiex 32468 ballotlemsima 32482 ballotlemrv2 32488 breprexplemc 32612 erdszelem4 33156 erdszelem8 33160 caures 35918 diophin 40594 irrapxlem1 40644 monotuz 40763 hashnzfzclim 41940 uzmptshftfval 41964 uzct 42611 uzfissfz 42865 ssuzfz 42888 uzssre2 42947 uzssz2 42996 uzinico2 43100 fnlimfvre 43215 climleltrp 43217 limsupequzmpt2 43259 limsupequzlem 43263 liminfequzmpt2 43332 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 sge0isum 43965 smflimlem1 44306 smflimlem2 44307 smflim 44312 |
Copyright terms: Public domain | W3C validator |