| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version | ||
| Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12738 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | 1 | ffvelcdmi 7017 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
| 3 | 2 | elpwid 4560 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 4 | 1 | fdmi 6663 | . . 3 ⊢ dom ℤ≥ = ℤ |
| 5 | 3, 4 | eleq2s 2846 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 6 | ndmfv 6855 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
| 7 | 0ss 4351 | . . 3 ⊢ ∅ ⊆ ℤ | |
| 8 | 6, 7 | eqsstrdi 3980 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
| 9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 dom cdm 5619 ‘cfv 6482 ℤcz 12471 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-neg 11350 df-z 12472 df-uz 12736 |
| This theorem is referenced by: uzssre 12757 uzwo 12812 uzwo2 12813 infssuzle 12832 infssuzcl 12833 uzsupss 12841 uzwo3 12844 uzsup 13767 cau3 15263 caubnd 15266 limsupgre 15388 rlimclim 15453 climz 15456 climaddc1 15542 climmulc2 15544 climsubc1 15545 climsubc2 15546 climlec2 15566 isercolllem1 15572 isercolllem2 15573 isercoll 15575 caurcvg 15584 caucvg 15586 iseraltlem1 15589 iseraltlem2 15590 iseraltlem3 15591 summolem2a 15622 summolem2 15623 zsum 15625 fsumcvg3 15636 climfsum 15727 divcnvshft 15762 clim2prod 15795 ntrivcvg 15804 ntrivcvgfvn0 15806 ntrivcvgtail 15807 ntrivcvgmullem 15808 ntrivcvgmul 15809 prodrblem 15836 prodmolem2a 15841 prodmolem2 15842 zprod 15844 4sqlem11 16867 gsumval3 19786 lmbrf 23145 lmres 23185 uzrest 23782 uzfbas 23783 lmflf 23890 lmmbrf 25160 iscau4 25177 iscauf 25178 caucfil 25181 lmclimf 25202 mbfsup 25563 mbflimsup 25565 ig1pdvds 26083 ulmval 26287 ulmpm 26290 2sqlem6 27332 ballotlemfc0 34467 ballotlemfcc 34468 ballotlemiex 34476 ballotlemsima 34490 ballotlemrv2 34496 breprexplemc 34606 erdszelem4 35177 erdszelem8 35181 caures 37750 diophin 42755 irrapxlem1 42805 monotuz 42924 hashnzfzclim 44305 uzmptshftfval 44329 uzct 45051 uzfissfz 45316 ssuzfz 45339 uzssre2 45396 uzssz2 45445 uzinico2 45552 fnlimfvre 45665 climleltrp 45667 limsupequzmpt2 45709 limsupequzlem 45713 liminfequzmpt2 45782 ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 sge0isum 46418 smflimlem1 46762 smflimlem2 46763 smflim 46768 |
| Copyright terms: Public domain | W3C validator |