Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12664 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | 1 | ffvelcdmi 6999 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
3 | 2 | elpwid 4553 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
4 | 1 | fdmi 6649 | . . 3 ⊢ dom ℤ≥ = ℤ |
5 | 3, 4 | eleq2s 2855 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
6 | ndmfv 6843 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
7 | 0ss 4340 | . . 3 ⊢ ∅ ⊆ ℤ | |
8 | 6, 7 | eqsstrdi 3984 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
9 | 5, 8 | pm2.61i 182 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 ⊆ wss 3896 ∅c0 4266 𝒫 cpw 4544 dom cdm 5607 ‘cfv 6465 ℤcz 12398 ℤ≥cuz 12661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-cnex 11006 ax-resscn 11007 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fv 6473 df-ov 7319 df-neg 11287 df-z 12399 df-uz 12662 |
This theorem is referenced by: uzssre 12683 uzwo 12730 uzwo2 12731 infssuzle 12750 infssuzcl 12751 uzsupss 12759 uzwo3 12762 uzsup 13662 cau3 15143 caubnd 15146 limsupgre 15266 rlimclim 15331 climz 15334 climaddc1 15420 climmulc2 15422 climsubc1 15423 climsubc2 15424 climlec2 15446 isercolllem1 15452 isercolllem2 15453 isercoll 15455 caurcvg 15464 caucvg 15466 iseraltlem1 15469 iseraltlem2 15470 iseraltlem3 15471 summolem2a 15503 summolem2 15504 zsum 15506 fsumcvg3 15517 climfsum 15608 divcnvshft 15643 clim2prod 15676 ntrivcvg 15685 ntrivcvgfvn0 15687 ntrivcvgtail 15688 ntrivcvgmullem 15689 ntrivcvgmul 15690 prodrblem 15715 prodmolem2a 15720 prodmolem2 15721 zprod 15723 4sqlem11 16730 gsumval3 19580 lmbrf 22491 lmres 22531 uzrest 23128 uzfbas 23129 lmflf 23236 lmmbrf 24506 iscau4 24523 iscauf 24524 caucfil 24527 lmclimf 24548 mbfsup 24908 mbflimsup 24910 ig1pdvds 25421 ulmval 25619 ulmpm 25622 2sqlem6 26651 ballotlemfc0 32595 ballotlemfcc 32596 ballotlemiex 32604 ballotlemsima 32618 ballotlemrv2 32624 breprexplemc 32748 erdszelem4 33291 erdszelem8 33295 caures 35995 diophin 40815 irrapxlem1 40865 monotuz 40985 hashnzfzclim 42179 uzmptshftfval 42203 uzct 42850 uzfissfz 43119 ssuzfz 43142 uzssre2 43201 uzssz2 43250 uzinico2 43355 fnlimfvre 43470 climleltrp 43472 limsupequzmpt2 43514 limsupequzlem 43518 liminfequzmpt2 43587 ioodvbdlimc1lem2 43728 ioodvbdlimc2lem 43730 sge0isum 44221 smflimlem1 44565 smflimlem2 44566 smflim 44571 |
Copyright terms: Public domain | W3C validator |