![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzssz | Structured version Visualization version GIF version |
Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzssz | ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12064 | . . . . 5 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | 1 | ffvelrni 6677 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
3 | 2 | elpwid 4435 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ⊆ ℤ) |
4 | 1 | fdmi 6356 | . . 3 ⊢ dom ℤ≥ = ℤ |
5 | 3, 4 | eleq2s 2884 | . 2 ⊢ (𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
6 | ndmfv 6531 | . . 3 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
7 | 0ss 4237 | . . 3 ⊢ ∅ ⊆ ℤ | |
8 | 6, 7 | syl6eqss 3913 | . 2 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) ⊆ ℤ) |
9 | 5, 8 | pm2.61i 177 | 1 ⊢ (ℤ≥‘𝑀) ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2050 ⊆ wss 3831 ∅c0 4180 𝒫 cpw 4423 dom cdm 5408 ‘cfv 6190 ℤcz 11796 ℤ≥cuz 12061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-cnex 10393 ax-resscn 10394 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-fv 6198 df-ov 6981 df-neg 10675 df-z 11797 df-uz 12062 |
This theorem is referenced by: uzwo 12128 uzwo2 12129 infssuzle 12148 infssuzcl 12149 uzsupss 12157 uzwo3 12160 uzsup 13049 cau3 14579 caubnd 14582 limsupgre 14702 rlimclim 14767 climz 14770 climaddc1 14855 climmulc2 14857 climsubc1 14858 climsubc2 14859 climlec2 14879 isercolllem1 14885 isercolllem2 14886 isercoll 14888 caurcvg 14897 caucvg 14899 iseraltlem1 14902 iseraltlem2 14903 iseraltlem3 14904 summolem2a 14935 summolem2 14936 zsum 14938 fsumcvg3 14949 climfsum 15038 divcnvshft 15073 clim2prod 15107 ntrivcvg 15116 ntrivcvgfvn0 15118 ntrivcvgtail 15119 ntrivcvgmullem 15120 ntrivcvgmul 15121 prodrblem 15146 prodmolem2a 15151 prodmolem2 15152 zprod 15154 4sqlem11 16150 gsumval3 18784 lmbrf 21575 lmres 21615 uzrest 22212 uzfbas 22213 lmflf 22320 lmmbrf 23571 iscau4 23588 iscauf 23589 caucfil 23592 lmclimf 23613 mbfsup 23971 mbflimsup 23973 ig1pdvds 24476 ulmval 24674 ulmpm 24677 2sqlem6 25704 ballotlemfc0 31396 ballotlemfcc 31397 ballotlemiex 31405 ballotlemsdom 31415 ballotlemsima 31419 ballotlemrv2 31425 breprexplemc 31551 erdszelem4 32026 erdszelem8 32030 caures 34477 diophin 38765 irrapxlem1 38815 monotuz 38934 hashnzfzclim 40070 uzmptshftfval 40094 uzct 40745 uzfissfz 41024 ssuzfz 41047 uzssre 41100 uzssre2 41112 uzssz2 41164 uzinico2 41270 fnlimfvre 41387 climleltrp 41389 limsupequzmpt2 41431 limsupequzlem 41435 liminfequzmpt2 41504 ioodvbdlimc1lem2 41648 ioodvbdlimc2lem 41650 sge0isum 42141 smflimlem1 42479 smflimlem2 42480 smflim 42485 |
Copyright terms: Public domain | W3C validator |