MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzval Structured version   Visualization version   GIF version

Theorem uzval 12905
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzval (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Distinct variable group:   𝑘,𝑁

Proof of Theorem uzval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 breq1 5169 . . 3 (𝑗 = 𝑁 → (𝑗𝑘𝑁𝑘))
21rabbidv 3451 . 2 (𝑗 = 𝑁 → {𝑘 ∈ ℤ ∣ 𝑗𝑘} = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
3 df-uz 12904 . 2 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
4 zex 12648 . . 3 ℤ ∈ V
54rabex 5357 . 2 {𝑘 ∈ ℤ ∣ 𝑁𝑘} ∈ V
62, 3, 5fvmpt 7029 1 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cfv 6573  cle 11325  cz 12639  cuz 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-neg 11523  df-z 12640  df-uz 12904
This theorem is referenced by:  eluz1  12907  nn0uz  12945  nnuz  12946  algfx  16627
  Copyright terms: Public domain W3C validator