| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzval | Structured version Visualization version GIF version | ||
| Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzval | ⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5092 | . . 3 ⊢ (𝑗 = 𝑁 → (𝑗 ≤ 𝑘 ↔ 𝑁 ≤ 𝑘)) | |
| 2 | 1 | rabbidv 3402 | . 2 ⊢ (𝑗 = 𝑁 → {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
| 3 | df-uz 12733 | . 2 ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | |
| 4 | zex 12477 | . . 3 ⊢ ℤ ∈ V | |
| 5 | 4 | rabex 5275 | . 2 ⊢ {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ∈ V |
| 6 | 2, 3, 5 | fvmpt 6929 | 1 ⊢ (𝑁 ∈ ℤ → (ℤ≥‘𝑁) = {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5089 ‘cfv 6481 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: eluz1 12736 nn0uz 12774 nnuz 12775 algfx 16491 |
| Copyright terms: Public domain | W3C validator |