MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzval Structured version   Visualization version   GIF version

Theorem uzval 12795
Description: The value of the upper integers function. (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzval (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Distinct variable group:   𝑘,𝑁

Proof of Theorem uzval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 breq1 5110 . . 3 (𝑗 = 𝑁 → (𝑗𝑘𝑁𝑘))
21rabbidv 3413 . 2 (𝑗 = 𝑁 → {𝑘 ∈ ℤ ∣ 𝑗𝑘} = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
3 df-uz 12794 . 2 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
4 zex 12538 . . 3 ℤ ∈ V
54rabex 5294 . 2 {𝑘 ∈ ℤ ∣ 𝑁𝑘} ∈ V
62, 3, 5fvmpt 6968 1 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑘 ∈ ℤ ∣ 𝑁𝑘})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405   class class class wbr 5107  cfv 6511  cle 11209  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-neg 11408  df-z 12530  df-uz 12794
This theorem is referenced by:  eluz1  12797  nn0uz  12835  nnuz  12836  algfx  16550
  Copyright terms: Public domain W3C validator