| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzf | Structured version Visualization version GIF version | ||
| Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| uzf | ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 12602 | . . . 4 ⊢ ℤ ∈ V | |
| 2 | ssrab2 4060 | . . . 4 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ⊆ ℤ | |
| 3 | 1, 2 | elpwi2 5310 | . . 3 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
| 4 | 3 | rgenw 3056 | . 2 ⊢ ∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
| 5 | df-uz 12858 | . . 3 ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | |
| 6 | 5 | fmpt 7105 | . 2 ⊢ (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ ↔ ℤ≥:ℤ⟶𝒫 ℤ) |
| 7 | 4, 6 | mpbi 230 | 1 ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3052 {crab 3420 Vcvv 3464 𝒫 cpw 4580 class class class wbr 5124 ⟶wf 6532 ≤ cle 11275 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-neg 11474 df-z 12594 df-uz 12858 |
| This theorem is referenced by: eluzel2 12862 uzn0 12874 uzssz 12878 ltweuz 13984 uzin2 15368 rexanuz 15369 sumz 15743 sumss 15745 prod1 15965 prodss 15968 lmbr2 23202 lmff 23244 zfbas 23839 uzrest 23840 lmflf 23948 lmmbr2 25216 caucfil 25240 lmcau 25270 heibor1lem 37838 dmuz 45225 |
| Copyright terms: Public domain | W3C validator |