![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzf | Structured version Visualization version GIF version |
Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzf | ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 12563 | . . . 4 ⊢ ℤ ∈ V | |
2 | ssrab2 4069 | . . . 4 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ⊆ ℤ | |
3 | 1, 2 | elpwi2 5336 | . . 3 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
4 | 3 | rgenw 3057 | . 2 ⊢ ∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
5 | df-uz 12819 | . . 3 ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | |
6 | 5 | fmpt 7101 | . 2 ⊢ (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ ↔ ℤ≥:ℤ⟶𝒫 ℤ) |
7 | 4, 6 | mpbi 229 | 1 ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ∀wral 3053 {crab 3424 Vcvv 3466 𝒫 cpw 4594 class class class wbr 5138 ⟶wf 6529 ≤ cle 11245 ℤcz 12554 ℤ≥cuz 12818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-cnex 11161 ax-resscn 11162 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-neg 11443 df-z 12555 df-uz 12819 |
This theorem is referenced by: eluzel2 12823 uzn0 12835 uzssz 12839 ltweuz 13922 uzin2 15287 rexanuz 15288 sumz 15664 sumss 15666 prod1 15884 prodss 15887 lmbr2 23073 lmff 23115 zfbas 23710 uzrest 23711 lmflf 23819 lmmbr2 25097 caucfil 25121 lmcau 25151 heibor1lem 37133 dmuz 44387 |
Copyright terms: Public domain | W3C validator |