MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzf Structured version   Visualization version   GIF version

Theorem uzf 12860
Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzf :ℤ⟶𝒫 ℤ

Proof of Theorem uzf
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12602 . . . 4 ℤ ∈ V
2 ssrab2 4060 . . . 4 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ⊆ ℤ
31, 2elpwi2 5310 . . 3 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
43rgenw 3056 . 2 𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
5 df-uz 12858 . . 3 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
65fmpt 7105 . 2 (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ ↔ ℤ:ℤ⟶𝒫 ℤ)
74, 6mpbi 230 1 :ℤ⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  𝒫 cpw 4580   class class class wbr 5124  wf 6532  cle 11275  cz 12593  cuz 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-neg 11474  df-z 12594  df-uz 12858
This theorem is referenced by:  eluzel2  12862  uzn0  12874  uzssz  12878  ltweuz  13984  uzin2  15368  rexanuz  15369  sumz  15743  sumss  15745  prod1  15965  prodss  15968  lmbr2  23202  lmff  23244  zfbas  23839  uzrest  23840  lmflf  23948  lmmbr2  25216  caucfil  25240  lmcau  25270  heibor1lem  37838  dmuz  45225
  Copyright terms: Public domain W3C validator