MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzf Structured version   Visualization version   GIF version

Theorem uzf 12906
Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzf :ℤ⟶𝒫 ℤ

Proof of Theorem uzf
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12648 . . . 4 ℤ ∈ V
2 ssrab2 4103 . . . 4 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ⊆ ℤ
31, 2elpwi2 5353 . . 3 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
43rgenw 3071 . 2 𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
5 df-uz 12904 . . 3 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
65fmpt 7144 . 2 (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ ↔ ℤ:ℤ⟶𝒫 ℤ)
74, 6mpbi 230 1 :ℤ⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  𝒫 cpw 4622   class class class wbr 5166  wf 6569  cle 11325  cz 12639  cuz 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-neg 11523  df-z 12640  df-uz 12904
This theorem is referenced by:  eluzel2  12908  uzn0  12920  uzssz  12924  ltweuz  14012  uzin2  15393  rexanuz  15394  sumz  15770  sumss  15772  prod1  15992  prodss  15995  lmbr2  23288  lmff  23330  zfbas  23925  uzrest  23926  lmflf  24034  lmmbr2  25312  caucfil  25336  lmcau  25366  heibor1lem  37769  dmuz  45141
  Copyright terms: Public domain W3C validator