MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzf Structured version   Visualization version   GIF version

Theorem uzf 12741
Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzf :ℤ⟶𝒫 ℤ

Proof of Theorem uzf
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12483 . . . 4 ℤ ∈ V
2 ssrab2 4029 . . . 4 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ⊆ ℤ
31, 2elpwi2 5275 . . 3 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
43rgenw 3051 . 2 𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
5 df-uz 12739 . . 3 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
65fmpt 7049 . 2 (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ ↔ ℤ:ℤ⟶𝒫 ℤ)
74, 6mpbi 230 1 :ℤ⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  𝒫 cpw 4549   class class class wbr 5093  wf 6483  cle 11153  cz 12474  cuz 12738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-cnex 11068  ax-resscn 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-neg 11353  df-z 12475  df-uz 12739
This theorem is referenced by:  eluzel2  12743  uzn0  12755  uzssz  12759  ltweuz  13874  uzin2  15258  rexanuz  15259  sumz  15635  sumss  15637  prod1  15857  prodss  15860  lmbr2  23180  lmff  23222  zfbas  23817  uzrest  23818  lmflf  23926  lmmbr2  25192  caucfil  25216  lmcau  25246  heibor1lem  37855  dmuz  45336
  Copyright terms: Public domain W3C validator