MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzf Structured version   Visualization version   GIF version

Theorem uzf 12882
Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
uzf :ℤ⟶𝒫 ℤ

Proof of Theorem uzf
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12624 . . . 4 ℤ ∈ V
2 ssrab2 4079 . . . 4 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ⊆ ℤ
31, 2elpwi2 5334 . . 3 {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
43rgenw 3064 . 2 𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ
5 df-uz 12880 . . 3 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
65fmpt 7129 . 2 (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗𝑘} ∈ 𝒫 ℤ ↔ ℤ:ℤ⟶𝒫 ℤ)
74, 6mpbi 230 1 :ℤ⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wral 3060  {crab 3435  Vcvv 3479  𝒫 cpw 4599   class class class wbr 5142  wf 6556  cle 11297  cz 12615  cuz 12879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-cnex 11212  ax-resscn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-neg 11496  df-z 12616  df-uz 12880
This theorem is referenced by:  eluzel2  12884  uzn0  12896  uzssz  12900  ltweuz  14003  uzin2  15384  rexanuz  15385  sumz  15759  sumss  15761  prod1  15981  prodss  15984  lmbr2  23268  lmff  23310  zfbas  23905  uzrest  23906  lmflf  24014  lmmbr2  25294  caucfil  25318  lmcau  25348  heibor1lem  37817  dmuz  45244
  Copyright terms: Public domain W3C validator