![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzf | Structured version Visualization version GIF version |
Description: The domain and codomain of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
uzf | ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 12648 | . . . 4 ⊢ ℤ ∈ V | |
2 | ssrab2 4103 | . . . 4 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ⊆ ℤ | |
3 | 1, 2 | elpwi2 5353 | . . 3 ⊢ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
4 | 3 | rgenw 3071 | . 2 ⊢ ∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ |
5 | df-uz 12904 | . . 3 ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) | |
6 | 5 | fmpt 7144 | . 2 ⊢ (∀𝑗 ∈ ℤ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘} ∈ 𝒫 ℤ ↔ ℤ≥:ℤ⟶𝒫 ℤ) |
7 | 4, 6 | mpbi 230 | 1 ⊢ ℤ≥:ℤ⟶𝒫 ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 𝒫 cpw 4622 class class class wbr 5166 ⟶wf 6569 ≤ cle 11325 ℤcz 12639 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 df-uz 12904 |
This theorem is referenced by: eluzel2 12908 uzn0 12920 uzssz 12924 ltweuz 14012 uzin2 15393 rexanuz 15394 sumz 15770 sumss 15772 prod1 15992 prodss 15995 lmbr2 23288 lmff 23330 zfbas 23925 uzrest 23926 lmflf 24034 lmmbr2 25312 caucfil 25336 lmcau 25366 heibor1lem 37769 dmuz 45141 |
Copyright terms: Public domain | W3C validator |