| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz1 | Structured version Visualization version GIF version | ||
| Description: Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
| Ref | Expression |
|---|---|
| eluz1 | ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzval 12734 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) = {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘})) |
| 3 | breq2 5093 | . . 3 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
| 4 | 3 | elrab 3642 | . 2 ⊢ (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 5 | 2, 4 | bitrdi 287 | 1 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 {crab 3395 class class class wbr 5089 ‘cfv 6481 ≤ cle 11147 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: eluz2 12738 eluz1i 12740 eluz 12746 uzid 12747 uzss 12755 eluzp1m1 12758 raluz 12794 rexuz 12796 preduz 13550 fi1uzind 14414 algcvga 16490 uzssico 32767 nndiffz1 32769 fzspl 32772 cycpmco2lem6 33100 cycpmconjslem2 33124 breprexplemc 34645 logblebd 42068 aks6d1c1 42208 aks6d1c2lem4 42219 lzunuz 42860 |
| Copyright terms: Public domain | W3C validator |