![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluz1 | Structured version Visualization version GIF version |
Description: Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
eluz1 | ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzval 12860 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) = {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) | |
2 | 1 | eleq2d 2814 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘})) |
3 | breq2 5154 | . . 3 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
4 | 3 | elrab 3682 | . 2 ⊢ (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
5 | 2, 4 | bitrdi 286 | 1 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 {crab 3428 class class class wbr 5150 ‘cfv 6551 ≤ cle 11285 ℤcz 12594 ℤ≥cuz 12858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-cnex 11200 ax-resscn 11201 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-iota 6503 df-fun 6553 df-fv 6559 df-ov 7427 df-neg 11483 df-z 12595 df-uz 12859 |
This theorem is referenced by: eluz2 12864 eluz1i 12866 eluz 12872 uzid 12873 uzss 12881 eluzp1m1 12884 raluz 12916 rexuz 12918 preduz 13661 fi1uzind 14496 algcvga 16555 uzssico 32570 nndiffz1 32572 fzspl 32576 cycpmco2lem6 32870 cycpmconjslem2 32894 breprexplemc 34269 logblebd 41450 aks6d1c1 41591 aks6d1c2lem4 41602 lzunuz 42191 |
Copyright terms: Public domain | W3C validator |