![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluz1 | Structured version Visualization version GIF version |
Description: Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
eluz1 | ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzval 12878 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) = {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘})) |
3 | breq2 5152 | . . 3 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
4 | 3 | elrab 3695 | . 2 ⊢ (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
5 | 2, 4 | bitrdi 287 | 1 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 {crab 3433 class class class wbr 5148 ‘cfv 6563 ≤ cle 11294 ℤcz 12611 ℤ≥cuz 12876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-neg 11493 df-z 12612 df-uz 12877 |
This theorem is referenced by: eluz2 12882 eluz1i 12884 eluz 12890 uzid 12891 uzss 12899 eluzp1m1 12902 raluz 12936 rexuz 12938 preduz 13687 fi1uzind 14543 algcvga 16613 uzssico 32793 nndiffz1 32795 fzspl 32798 cycpmco2lem6 33134 cycpmconjslem2 33158 breprexplemc 34626 logblebd 41958 aks6d1c1 42098 aks6d1c2lem4 42109 lzunuz 42756 |
Copyright terms: Public domain | W3C validator |