MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn Structured version   Visualization version   GIF version

Theorem wwlksn 29819
Description: The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
wwlksn (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁

Proof of Theorem wwlksn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . . . 6 (𝑔 = 𝐺 → (WWalks‘𝑔) = (WWalks‘𝐺))
21adantl 481 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (WWalks‘𝑔) = (WWalks‘𝐺))
3 oveq1 7412 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
43eqeq2d 2746 . . . . . 6 (𝑛 = 𝑁 → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1)))
54adantr 480 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1)))
62, 5rabeqbidv 3434 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
7 df-wwlksn 29813 . . . 4 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
8 fvex 6889 . . . . 5 (WWalks‘𝐺) ∈ V
98rabex 5309 . . . 4 {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ V
106, 7, 9ovmpoa 7562 . . 3 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
1110expcom 413 . 2 (𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}))
127reldmmpo 7541 . . . . 5 Rel dom WWalksN
1312ovprc2 7445 . . . 4 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = ∅)
14 fvprc 6868 . . . . . 6 𝐺 ∈ V → (WWalks‘𝐺) = ∅)
1514rabeqdv 3431 . . . . 5 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)})
16 rab0 4361 . . . . 5 {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅
1715, 16eqtrdi 2786 . . . 4 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅)
1813, 17eqtr4d 2773 . . 3 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
1918a1d 25 . 2 𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}))
2011, 19pm2.61i 182 1 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  c0 4308  cfv 6531  (class class class)co 7405  1c1 11130   + caddc 11132  0cn0 12501  chash 14348  WWalkscwwlks 29807   WWalksN cwwlksn 29808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-wwlksn 29813
This theorem is referenced by:  iswwlksn  29820  wwlksn0s  29843  0enwwlksnge1  29846  wlknwwlksnbij  29870  wwlksnfi  29888
  Copyright terms: Public domain W3C validator