![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksn | Structured version Visualization version GIF version |
Description: The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
wwlksn | ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6869 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (WWalks‘𝑔) = (WWalks‘𝐺)) | |
2 | 1 | adantl 482 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (WWalks‘𝑔) = (WWalks‘𝐺)) |
3 | oveq1 7391 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) | |
4 | 3 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1))) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1))) |
6 | 2, 5 | rabeqbidv 3442 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
7 | df-wwlksn 28880 | . . . 4 ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) | |
8 | fvex 6882 | . . . . 5 ⊢ (WWalks‘𝐺) ∈ V | |
9 | 8 | rabex 5316 | . . . 4 ⊢ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ V |
10 | 6, 7, 9 | ovmpoa 7537 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
11 | 10 | expcom 414 | . 2 ⊢ (𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
12 | 7 | reldmmpo 7517 | . . . . 5 ⊢ Rel dom WWalksN |
13 | 12 | ovprc2 7424 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = ∅) |
14 | fvprc 6861 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (WWalks‘𝐺) = ∅) | |
15 | 14 | rabeqdv 3440 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)}) |
16 | rab0 4369 | . . . . 5 ⊢ {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅ | |
17 | 15, 16 | eqtrdi 2787 | . . . 4 ⊢ (¬ 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅) |
18 | 13, 17 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
19 | 18 | a1d 25 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
20 | 11, 19 | pm2.61i 182 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3425 Vcvv 3466 ∅c0 4309 ‘cfv 6523 (class class class)co 7384 1c1 11083 + caddc 11085 ℕ0cn0 12444 ♯chash 14262 WWalkscwwlks 28874 WWalksN cwwlksn 28875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5283 ax-nul 5290 ax-pr 5411 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3426 df-v 3468 df-sbc 3765 df-dif 3938 df-un 3940 df-in 3942 df-ss 3952 df-nul 4310 df-if 4514 df-sn 4614 df-pr 4616 df-op 4620 df-uni 4893 df-br 5133 df-opab 5195 df-id 5558 df-xp 5666 df-rel 5667 df-cnv 5668 df-co 5669 df-dm 5670 df-iota 6475 df-fun 6525 df-fv 6531 df-ov 7387 df-oprab 7388 df-mpo 7389 df-wwlksn 28880 |
This theorem is referenced by: iswwlksn 28887 wwlksn0s 28910 0enwwlksnge1 28913 wlknwwlksnbij 28937 wwlksnfi 28955 |
Copyright terms: Public domain | W3C validator |