| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlksn | Structured version Visualization version GIF version | ||
| Description: The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| wwlksn | ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (WWalks‘𝑔) = (WWalks‘𝐺)) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (WWalks‘𝑔) = (WWalks‘𝐺)) |
| 3 | oveq1 7397 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) | |
| 4 | 3 | eqeq2d 2741 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1))) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1))) |
| 6 | 2, 5 | rabeqbidv 3427 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
| 7 | df-wwlksn 29768 | . . . 4 ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) | |
| 8 | fvex 6874 | . . . . 5 ⊢ (WWalks‘𝐺) ∈ V | |
| 9 | 8 | rabex 5297 | . . . 4 ⊢ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ V |
| 10 | 6, 7, 9 | ovmpoa 7547 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
| 11 | 10 | expcom 413 | . 2 ⊢ (𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
| 12 | 7 | reldmmpo 7526 | . . . . 5 ⊢ Rel dom WWalksN |
| 13 | 12 | ovprc2 7430 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = ∅) |
| 14 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (WWalks‘𝐺) = ∅) | |
| 15 | 14 | rabeqdv 3424 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)}) |
| 16 | rab0 4352 | . . . . 5 ⊢ {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅ | |
| 17 | 15, 16 | eqtrdi 2781 | . . . 4 ⊢ (¬ 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅) |
| 18 | 13, 17 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
| 19 | 18 | a1d 25 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
| 20 | 11, 19 | pm2.61i 182 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 ℕ0cn0 12449 ♯chash 14302 WWalkscwwlks 29762 WWalksN cwwlksn 29763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-wwlksn 29768 |
| This theorem is referenced by: iswwlksn 29775 wwlksn0s 29798 0enwwlksnge1 29801 wlknwwlksnbij 29825 wwlksnfi 29843 |
| Copyright terms: Public domain | W3C validator |