MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn Structured version   Visualization version   GIF version

Theorem wwlksn 28886
Description: The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
wwlksn (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁

Proof of Theorem wwlksn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6869 . . . . . 6 (𝑔 = 𝐺 → (WWalks‘𝑔) = (WWalks‘𝐺))
21adantl 482 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (WWalks‘𝑔) = (WWalks‘𝐺))
3 oveq1 7391 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
43eqeq2d 2742 . . . . . 6 (𝑛 = 𝑁 → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1)))
54adantr 481 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1)))
62, 5rabeqbidv 3442 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
7 df-wwlksn 28880 . . . 4 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
8 fvex 6882 . . . . 5 (WWalks‘𝐺) ∈ V
98rabex 5316 . . . 4 {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ V
106, 7, 9ovmpoa 7537 . . 3 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
1110expcom 414 . 2 (𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}))
127reldmmpo 7517 . . . . 5 Rel dom WWalksN
1312ovprc2 7424 . . . 4 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = ∅)
14 fvprc 6861 . . . . . 6 𝐺 ∈ V → (WWalks‘𝐺) = ∅)
1514rabeqdv 3440 . . . . 5 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)})
16 rab0 4369 . . . . 5 {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅
1715, 16eqtrdi 2787 . . . 4 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅)
1813, 17eqtr4d 2774 . . 3 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
1918a1d 25 . 2 𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}))
2011, 19pm2.61i 182 1 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3425  Vcvv 3466  c0 4309  cfv 6523  (class class class)co 7384  1c1 11083   + caddc 11085  0cn0 12444  chash 14262  WWalkscwwlks 28874   WWalksN cwwlksn 28875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5283  ax-nul 5290  ax-pr 5411
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3426  df-v 3468  df-sbc 3765  df-dif 3938  df-un 3940  df-in 3942  df-ss 3952  df-nul 4310  df-if 4514  df-sn 4614  df-pr 4616  df-op 4620  df-uni 4893  df-br 5133  df-opab 5195  df-id 5558  df-xp 5666  df-rel 5667  df-cnv 5668  df-co 5669  df-dm 5670  df-iota 6475  df-fun 6525  df-fv 6531  df-ov 7387  df-oprab 7388  df-mpo 7389  df-wwlksn 28880
This theorem is referenced by:  iswwlksn  28887  wwlksn0s  28910  0enwwlksnge1  28913  wlknwwlksnbij  28937  wwlksnfi  28955
  Copyright terms: Public domain W3C validator