MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn Structured version   Visualization version   GIF version

Theorem wwlksn 29815
Description: The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
wwlksn (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁

Proof of Theorem wwlksn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑔 = 𝐺 → (WWalks‘𝑔) = (WWalks‘𝐺))
21adantl 481 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → (WWalks‘𝑔) = (WWalks‘𝐺))
3 oveq1 7353 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
43eqeq2d 2742 . . . . . 6 (𝑛 = 𝑁 → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1)))
54adantr 480 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1)))
62, 5rabeqbidv 3413 . . . 4 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
7 df-wwlksn 29809 . . . 4 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
8 fvex 6835 . . . . 5 (WWalks‘𝐺) ∈ V
98rabex 5275 . . . 4 {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ V
106, 7, 9ovmpoa 7501 . . 3 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
1110expcom 413 . 2 (𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}))
127reldmmpo 7480 . . . . 5 Rel dom WWalksN
1312ovprc2 7386 . . . 4 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = ∅)
14 fvprc 6814 . . . . . 6 𝐺 ∈ V → (WWalks‘𝐺) = ∅)
1514rabeqdv 3410 . . . . 5 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)})
16 rab0 4333 . . . . 5 {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅
1715, 16eqtrdi 2782 . . . 4 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅)
1813, 17eqtr4d 2769 . . 3 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
1918a1d 25 . 2 𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}))
2011, 19pm2.61i 182 1 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  c0 4280  cfv 6481  (class class class)co 7346  1c1 11007   + caddc 11009  0cn0 12381  chash 14237  WWalkscwwlks 29803   WWalksN cwwlksn 29804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-wwlksn 29809
This theorem is referenced by:  iswwlksn  29816  wwlksn0s  29839  0enwwlksnge1  29842  wlknwwlksnbij  29866  wwlksnfi  29884
  Copyright terms: Public domain W3C validator