![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksn | Structured version Visualization version GIF version |
Description: The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.) |
Ref | Expression |
---|---|
wwlksn | ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (WWalks‘𝑔) = (WWalks‘𝐺)) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (WWalks‘𝑔) = (WWalks‘𝐺)) |
3 | oveq1 7455 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) | |
4 | 3 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1))) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((♯‘𝑤) = (𝑛 + 1) ↔ (♯‘𝑤) = (𝑁 + 1))) |
6 | 2, 5 | rabeqbidv 3462 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
7 | df-wwlksn 29864 | . . . 4 ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) | |
8 | fvex 6933 | . . . . 5 ⊢ (WWalks‘𝐺) ∈ V | |
9 | 8 | rabex 5357 | . . . 4 ⊢ {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ V |
10 | 6, 7, 9 | ovmpoa 7605 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
11 | 10 | expcom 413 | . 2 ⊢ (𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
12 | 7 | reldmmpo 7584 | . . . . 5 ⊢ Rel dom WWalksN |
13 | 12 | ovprc2 7488 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = ∅) |
14 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (WWalks‘𝐺) = ∅) | |
15 | 14 | rabeqdv 3459 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)}) |
16 | rab0 4409 | . . . . 5 ⊢ {𝑤 ∈ ∅ ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅ | |
17 | 15, 16 | eqtrdi 2796 | . . . 4 ⊢ (¬ 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = ∅) |
18 | 13, 17 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
19 | 18 | a1d 25 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})) |
20 | 11, 19 | pm2.61i 182 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 1c1 11185 + caddc 11187 ℕ0cn0 12553 ♯chash 14379 WWalkscwwlks 29858 WWalksN cwwlksn 29859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-wwlksn 29864 |
This theorem is referenced by: iswwlksn 29871 wwlksn0s 29894 0enwwlksnge1 29897 wlknwwlksnbij 29921 wwlksnfi 29939 |
Copyright terms: Public domain | W3C validator |