MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknbp Structured version   Visualization version   GIF version

Theorem wwlknbp 27607
Description: Basic properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018.) (Revised by AV, 9-Apr-2021.) (Proof shortened by AV, 20-May-2021.)
Hypothesis
Ref Expression
wwlkbp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlknbp (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))

Proof of Theorem wwlknbp
Dummy variables 𝑔 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wwlksn 27596 . . 3 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
21elmpocl 7362 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝐺 ∈ V))
3 simpl 486 . . . 4 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺)) → (𝑁 ∈ ℕ0𝐺 ∈ V))
43ancomd 465 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺)) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0))
5 iswwlksn 27603 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))
65adantr 484 . . . . 5 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))
7 wwlkbp.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
87wwlkbp 27606 . . . . . . 7 (𝑊 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉))
98simprd 499 . . . . . 6 (𝑊 ∈ (WWalks‘𝐺) → 𝑊 ∈ Word 𝑉)
109adantr 484 . . . . 5 ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉)
116, 10syl6bi 256 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ Word 𝑉))
1211imp 410 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺)) → 𝑊 ∈ Word 𝑉)
13 df-3an 1086 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉) ↔ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑊 ∈ Word 𝑉))
144, 12, 13sylanbrc 586 . 2 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺)) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
152, 14mpancom 687 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  {crab 3130  Vcvv 3471  cfv 6328  (class class class)co 7130  1c1 10515   + caddc 10517  0cn0 11875  chash 13674  Word cword 13845  Vtxcvtx 26768  WWalkscwwlks 27590   WWalksN cwwlksn 27591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017  df-hash 13675  df-word 13846  df-wwlks 27595  df-wwlksn 27596
This theorem is referenced by:  wwlknp  27608  wwlknbp1  27609  wwlkswwlksn  27630  wlklnwwlkln2lem  27647  wwlksnext  27658  wwlksnextwrd  27662  wwlksnextsurj  27665  wwlksnextbij0  27666  wwlksnndef  27670  numclwwlk2lem1  28140
  Copyright terms: Public domain W3C validator