![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlknbp | Structured version Visualization version GIF version |
Description: Basic properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018.) (Revised by AV, 9-Apr-2021.) (Proof shortened by AV, 20-May-2021.) |
Ref | Expression |
---|---|
wwlkbp.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
wwlknbp | β’ (π β (π WWalksN πΊ) β (πΊ β V β§ π β β0 β§ π β Word π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wwlksn 29353 | . . 3 β’ WWalksN = (π β β0, π β V β¦ {π€ β (WWalksβπ) β£ (β―βπ€) = (π + 1)}) | |
2 | 1 | elmpocl 7651 | . 2 β’ (π β (π WWalksN πΊ) β (π β β0 β§ πΊ β V)) |
3 | simpl 482 | . . . 4 β’ (((π β β0 β§ πΊ β V) β§ π β (π WWalksN πΊ)) β (π β β0 β§ πΊ β V)) | |
4 | 3 | ancomd 461 | . . 3 β’ (((π β β0 β§ πΊ β V) β§ π β (π WWalksN πΊ)) β (πΊ β V β§ π β β0)) |
5 | iswwlksn 29360 | . . . . . 6 β’ (π β β0 β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)))) | |
6 | 5 | adantr 480 | . . . . 5 β’ ((π β β0 β§ πΊ β V) β (π β (π WWalksN πΊ) β (π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)))) |
7 | wwlkbp.v | . . . . . . . 8 β’ π = (VtxβπΊ) | |
8 | 7 | wwlkbp 29363 | . . . . . . 7 β’ (π β (WWalksβπΊ) β (πΊ β V β§ π β Word π)) |
9 | 8 | simprd 495 | . . . . . 6 β’ (π β (WWalksβπΊ) β π β Word π) |
10 | 9 | adantr 480 | . . . . 5 β’ ((π β (WWalksβπΊ) β§ (β―βπ) = (π + 1)) β π β Word π) |
11 | 6, 10 | syl6bi 253 | . . . 4 β’ ((π β β0 β§ πΊ β V) β (π β (π WWalksN πΊ) β π β Word π)) |
12 | 11 | imp 406 | . . 3 β’ (((π β β0 β§ πΊ β V) β§ π β (π WWalksN πΊ)) β π β Word π) |
13 | df-3an 1088 | . . 3 β’ ((πΊ β V β§ π β β0 β§ π β Word π) β ((πΊ β V β§ π β β0) β§ π β Word π)) | |
14 | 4, 12, 13 | sylanbrc 582 | . 2 β’ (((π β β0 β§ πΊ β V) β§ π β (π WWalksN πΊ)) β (πΊ β V β§ π β β0 β§ π β Word π)) |
15 | 2, 14 | mpancom 685 | 1 β’ (π β (π WWalksN πΊ) β (πΊ β V β§ π β β0 β§ π β Word π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 {crab 3431 Vcvv 3473 βcfv 6543 (class class class)co 7412 1c1 11114 + caddc 11116 β0cn0 12477 β―chash 14295 Word cword 14469 Vtxcvtx 28524 WWalkscwwlks 29347 WWalksN cwwlksn 29348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-wwlks 29352 df-wwlksn 29353 |
This theorem is referenced by: wwlknp 29365 wwlknbp1 29366 wwlkswwlksn 29387 wlklnwwlkln2lem 29404 wwlksnext 29415 wwlksnextwrd 29419 wwlksnextsurj 29422 wwlksnextbij0 29423 wwlksnndef 29427 numclwwlk2lem1 29897 |
Copyright terms: Public domain | W3C validator |