MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xneg Structured version   Visualization version   GIF version

Definition df-xneg 13072
Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
df-xneg -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))

Detailed syntax breakdown of Definition df-xneg
StepHypRef Expression
1 cA . . 3 class 𝐴
21cxne 13069 . 2 class -𝑒𝐴
3 cpnf 11205 . . . 4 class +∞
41, 3wceq 1540 . . 3 wff 𝐴 = +∞
5 cmnf 11206 . . 3 class -∞
61, 5wceq 1540 . . . 4 wff 𝐴 = -∞
71cneg 11406 . . . 4 class -𝐴
86, 3, 7cif 4488 . . 3 class if(𝐴 = -∞, +∞, -𝐴)
94, 5, 8cif 4488 . 2 class if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
102, 9wceq 1540 1 wff -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  xnegeq  13167  xnegex  13168  xnegpnf  13169  xnegmnf  13170  rexneg  13171  nfxnegd  45437
  Copyright terms: Public domain W3C validator