| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xneg | Structured version Visualization version GIF version | ||
| Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| df-xneg | ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cxne 13151 | . 2 class -𝑒𝐴 |
| 3 | cpnf 11292 | . . . 4 class +∞ | |
| 4 | 1, 3 | wceq 1540 | . . 3 wff 𝐴 = +∞ |
| 5 | cmnf 11293 | . . 3 class -∞ | |
| 6 | 1, 5 | wceq 1540 | . . . 4 wff 𝐴 = -∞ |
| 7 | 1 | cneg 11493 | . . . 4 class -𝐴 |
| 8 | 6, 3, 7 | cif 4525 | . . 3 class if(𝐴 = -∞, +∞, -𝐴) |
| 9 | 4, 5, 8 | cif 4525 | . 2 class if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
| 10 | 2, 9 | wceq 1540 | 1 wff -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: xnegeq 13249 xnegex 13250 xnegpnf 13251 xnegmnf 13252 rexneg 13253 nfxnegd 45452 |
| Copyright terms: Public domain | W3C validator |