| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version | ||
| Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegmnf | ⊢ -𝑒-∞ = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13079 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
| 2 | mnfnepnf 11237 | . . 3 ⊢ -∞ ≠ +∞ | |
| 3 | ifnefalse 4503 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
| 5 | eqid 2730 | . . 3 ⊢ -∞ = -∞ | |
| 6 | 5 | iftruei 4498 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
| 7 | 1, 4, 6 | 3eqtri 2757 | 1 ⊢ -𝑒-∞ = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2926 ifcif 4491 +∞cpnf 11212 -∞cmnf 11213 -cneg 11413 -𝑒cxne 13076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pow 5323 ax-un 7714 ax-cnex 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-un 3922 df-in 3924 df-ss 3934 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-uni 4875 df-pnf 11217 df-mnf 11218 df-xr 11219 df-xneg 13079 |
| This theorem is referenced by: xnegcl 13180 xnegneg 13181 xltnegi 13183 xnegid 13205 xnegdi 13215 xsubge0 13228 xmulneg1 13236 xmulpnf1n 13245 xadddi2 13264 xrsdsreclblem 21336 xaddeq0 32683 xrge0npcan 32968 carsgclctunlem2 34317 supminfxr 45467 supminfxr2 45472 liminf0 45798 liminflbuz2 45820 liminfpnfuz 45821 |
| Copyright terms: Public domain | W3C validator |