| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version | ||
| Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegmnf | ⊢ -𝑒-∞ = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13011 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
| 2 | mnfnepnf 11168 | . . 3 ⊢ -∞ ≠ +∞ | |
| 3 | ifnefalse 4484 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
| 5 | eqid 2731 | . . 3 ⊢ -∞ = -∞ | |
| 6 | 5 | iftruei 4479 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
| 7 | 1, 4, 6 | 3eqtri 2758 | 1 ⊢ -𝑒-∞ = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2928 ifcif 4472 +∞cpnf 11143 -∞cmnf 11144 -cneg 11345 -𝑒cxne 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-pnf 11148 df-mnf 11149 df-xr 11150 df-xneg 13011 |
| This theorem is referenced by: xnegcl 13112 xnegneg 13113 xltnegi 13115 xnegid 13137 xnegdi 13147 xsubge0 13160 xmulneg1 13168 xmulpnf1n 13177 xadddi2 13196 xrsdsreclblem 21349 xaddeq0 32736 xrge0npcan 33001 carsgclctunlem2 34332 supminfxr 45572 supminfxr2 45577 liminf0 45901 liminflbuz2 45923 liminfpnfuz 45924 |
| Copyright terms: Public domain | W3C validator |