| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version | ||
| Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegmnf | ⊢ -𝑒-∞ = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13014 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
| 2 | mnfnepnf 11171 | . . 3 ⊢ -∞ ≠ +∞ | |
| 3 | ifnefalse 4488 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
| 5 | eqid 2729 | . . 3 ⊢ -∞ = -∞ | |
| 6 | 5 | iftruei 4483 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
| 7 | 1, 4, 6 | 3eqtri 2756 | 1 ⊢ -𝑒-∞ = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 ifcif 4476 +∞cpnf 11146 -∞cmnf 11147 -cneg 11348 -𝑒cxne 13011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pow 5304 ax-un 7671 ax-cnex 11065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 df-ss 3920 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 df-pnf 11151 df-mnf 11152 df-xr 11153 df-xneg 13014 |
| This theorem is referenced by: xnegcl 13115 xnegneg 13116 xltnegi 13118 xnegid 13140 xnegdi 13150 xsubge0 13163 xmulneg1 13171 xmulpnf1n 13180 xadddi2 13199 xrsdsreclblem 21319 xaddeq0 32697 xrge0npcan 32975 carsgclctunlem2 34293 supminfxr 45453 supminfxr2 45458 liminf0 45784 liminflbuz2 45806 liminfpnfuz 45807 |
| Copyright terms: Public domain | W3C validator |