| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version | ||
| Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegmnf | ⊢ -𝑒-∞ = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13128 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
| 2 | mnfnepnf 11291 | . . 3 ⊢ -∞ ≠ +∞ | |
| 3 | ifnefalse 4512 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
| 5 | eqid 2735 | . . 3 ⊢ -∞ = -∞ | |
| 6 | 5 | iftruei 4507 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
| 7 | 1, 4, 6 | 3eqtri 2762 | 1 ⊢ -𝑒-∞ = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2932 ifcif 4500 +∞cpnf 11266 -∞cmnf 11267 -cneg 11467 -𝑒cxne 13125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pow 5335 ax-un 7729 ax-cnex 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-un 3931 df-in 3933 df-ss 3943 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-uni 4884 df-pnf 11271 df-mnf 11272 df-xr 11273 df-xneg 13128 |
| This theorem is referenced by: xnegcl 13229 xnegneg 13230 xltnegi 13232 xnegid 13254 xnegdi 13264 xsubge0 13277 xmulneg1 13285 xmulpnf1n 13294 xadddi2 13313 xrsdsreclblem 21380 xaddeq0 32730 xrge0npcan 33015 carsgclctunlem2 34351 supminfxr 45491 supminfxr2 45496 liminf0 45822 liminflbuz2 45844 liminfpnfuz 45845 |
| Copyright terms: Public domain | W3C validator |