| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version | ||
| Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegmnf | ⊢ -𝑒-∞ = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13048 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
| 2 | mnfnepnf 11206 | . . 3 ⊢ -∞ ≠ +∞ | |
| 3 | ifnefalse 4496 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
| 5 | eqid 2729 | . . 3 ⊢ -∞ = -∞ | |
| 6 | 5 | iftruei 4491 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
| 7 | 1, 4, 6 | 3eqtri 2756 | 1 ⊢ -𝑒-∞ = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 ifcif 4484 +∞cpnf 11181 -∞cmnf 11182 -cneg 11382 -𝑒cxne 13045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pow 5315 ax-un 7691 ax-cnex 11100 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-un 3916 df-in 3918 df-ss 3928 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-xneg 13048 |
| This theorem is referenced by: xnegcl 13149 xnegneg 13150 xltnegi 13152 xnegid 13174 xnegdi 13184 xsubge0 13197 xmulneg1 13205 xmulpnf1n 13214 xadddi2 13233 xrsdsreclblem 21354 xaddeq0 32726 xrge0npcan 33004 carsgclctunlem2 34303 supminfxr 45453 supminfxr2 45458 liminf0 45784 liminflbuz2 45806 liminfpnfuz 45807 |
| Copyright terms: Public domain | W3C validator |