![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version |
Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegmnf | ⊢ -𝑒-∞ = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12192 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
2 | mnfnepnf 10386 | . . 3 ⊢ -∞ ≠ +∞ | |
3 | ifnefalse 4290 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
5 | eqid 2800 | . . 3 ⊢ -∞ = -∞ | |
6 | 5 | iftruei 4285 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
7 | 1, 4, 6 | 3eqtri 2826 | 1 ⊢ -𝑒-∞ = +∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ≠ wne 2972 ifcif 4278 +∞cpnf 10361 -∞cmnf 10362 -cneg 10558 -𝑒cxne 12189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-pow 5036 ax-un 7184 ax-cnex 10281 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-rex 3096 df-rab 3099 df-v 3388 df-un 3775 df-in 3777 df-ss 3784 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-uni 4630 df-pnf 10366 df-mnf 10367 df-xr 10368 df-xneg 12192 |
This theorem is referenced by: xnegcl 12292 xnegneg 12293 xltnegi 12295 xnegid 12317 xnegdi 12326 xsubge0 12339 xmulneg1 12347 xmulpnf1n 12356 xadddi2 12375 xrsdsreclblem 20113 xaddeq0 30035 xrge0npcan 30209 carsgclctunlem2 30896 supminfxr 40432 supminfxr2 40437 liminf0 40764 |
Copyright terms: Public domain | W3C validator |