| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version | ||
| Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegmnf | ⊢ -𝑒-∞ = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13072 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
| 2 | mnfnepnf 11230 | . . 3 ⊢ -∞ ≠ +∞ | |
| 3 | ifnefalse 4500 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
| 5 | eqid 2729 | . . 3 ⊢ -∞ = -∞ | |
| 6 | 5 | iftruei 4495 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
| 7 | 1, 4, 6 | 3eqtri 2756 | 1 ⊢ -𝑒-∞ = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 ifcif 4488 +∞cpnf 11205 -∞cmnf 11206 -cneg 11406 -𝑒cxne 13069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pow 5320 ax-un 7711 ax-cnex 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-un 3919 df-in 3921 df-ss 3931 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 df-pnf 11210 df-mnf 11211 df-xr 11212 df-xneg 13072 |
| This theorem is referenced by: xnegcl 13173 xnegneg 13174 xltnegi 13176 xnegid 13198 xnegdi 13208 xsubge0 13221 xmulneg1 13229 xmulpnf1n 13238 xadddi2 13257 xrsdsreclblem 21329 xaddeq0 32676 xrge0npcan 32961 carsgclctunlem2 34310 supminfxr 45460 supminfxr2 45465 liminf0 45791 liminflbuz2 45813 liminfpnfuz 45814 |
| Copyright terms: Public domain | W3C validator |