![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version |
Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegmnf | ⊢ -𝑒-∞ = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13088 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
2 | mnfnepnf 11266 | . . 3 ⊢ -∞ ≠ +∞ | |
3 | ifnefalse 4532 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
5 | eqid 2724 | . . 3 ⊢ -∞ = -∞ | |
6 | 5 | iftruei 4527 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
7 | 1, 4, 6 | 3eqtri 2756 | 1 ⊢ -𝑒-∞ = +∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ≠ wne 2932 ifcif 4520 +∞cpnf 11241 -∞cmnf 11242 -cneg 11441 -𝑒cxne 13085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-pow 5353 ax-un 7718 ax-cnex 11161 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-rab 3425 df-v 3468 df-un 3945 df-in 3947 df-ss 3957 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-uni 4900 df-pnf 11246 df-mnf 11247 df-xr 11248 df-xneg 13088 |
This theorem is referenced by: xnegcl 13188 xnegneg 13189 xltnegi 13191 xnegid 13213 xnegdi 13223 xsubge0 13236 xmulneg1 13244 xmulpnf1n 13253 xadddi2 13272 xrsdsreclblem 21274 xaddeq0 32401 xrge0npcan 32626 carsgclctunlem2 33773 supminfxr 44625 supminfxr2 44630 liminf0 44960 liminflbuz2 44982 liminfpnfuz 44983 |
Copyright terms: Public domain | W3C validator |