![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version |
Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegmnf | ⊢ -𝑒-∞ = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13175 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
2 | mnfnepnf 11346 | . . 3 ⊢ -∞ ≠ +∞ | |
3 | ifnefalse 4560 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
5 | eqid 2740 | . . 3 ⊢ -∞ = -∞ | |
6 | 5 | iftruei 4555 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
7 | 1, 4, 6 | 3eqtri 2772 | 1 ⊢ -𝑒-∞ = +∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2946 ifcif 4548 +∞cpnf 11321 -∞cmnf 11322 -cneg 11521 -𝑒cxne 13172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-pnf 11326 df-mnf 11327 df-xr 11328 df-xneg 13175 |
This theorem is referenced by: xnegcl 13275 xnegneg 13276 xltnegi 13278 xnegid 13300 xnegdi 13310 xsubge0 13323 xmulneg1 13331 xmulpnf1n 13340 xadddi2 13359 xrsdsreclblem 21453 xaddeq0 32760 xrge0npcan 33006 carsgclctunlem2 34284 supminfxr 45379 supminfxr2 45384 liminf0 45714 liminflbuz2 45736 liminfpnfuz 45737 |
Copyright terms: Public domain | W3C validator |