Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegmnf | Structured version Visualization version GIF version |
Description: Minus -∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegmnf | ⊢ -𝑒-∞ = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12777 | . 2 ⊢ -𝑒-∞ = if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) | |
2 | mnfnepnf 10962 | . . 3 ⊢ -∞ ≠ +∞ | |
3 | ifnefalse 4468 | . . 3 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ if(-∞ = +∞, -∞, if(-∞ = -∞, +∞, --∞)) = if(-∞ = -∞, +∞, --∞) |
5 | eqid 2738 | . . 3 ⊢ -∞ = -∞ | |
6 | 5 | iftruei 4463 | . 2 ⊢ if(-∞ = -∞, +∞, --∞) = +∞ |
7 | 1, 4, 6 | 3eqtri 2770 | 1 ⊢ -𝑒-∞ = +∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2942 ifcif 4456 +∞cpnf 10937 -∞cmnf 10938 -cneg 11136 -𝑒cxne 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-pnf 10942 df-mnf 10943 df-xr 10944 df-xneg 12777 |
This theorem is referenced by: xnegcl 12876 xnegneg 12877 xltnegi 12879 xnegid 12901 xnegdi 12911 xsubge0 12924 xmulneg1 12932 xmulpnf1n 12941 xadddi2 12960 xrsdsreclblem 20556 xaddeq0 30978 xrge0npcan 31205 carsgclctunlem2 32186 supminfxr 42894 supminfxr2 42899 liminf0 43224 liminflbuz2 43246 liminfpnfuz 43247 |
Copyright terms: Public domain | W3C validator |