MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegpnf Structured version   Visualization version   GIF version

Theorem xnegpnf 13169
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 13072 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2729 . . 3 +∞ = +∞
32iftruei 4495 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2752 1 -𝑒+∞ = -∞
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4488  +∞cpnf 11205  -∞cmnf 11206  -cneg 11406  -𝑒cxne 13069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-if 4489  df-xneg 13072
This theorem is referenced by:  xnegcl  13173  xnegneg  13174  xltnegi  13176  xnegid  13198  xnegdi  13208  xaddass2  13210  xsubge0  13221  xlesubadd  13223  xmulneg1  13229  xmulmnf1  13236  xadddi2  13257  xrsdsreclblem  21329  xblss2ps  24289  xblss2  24290  xaddeq0  32676  supminfxr  45460  liminflbuz2  45813
  Copyright terms: Public domain W3C validator