![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version |
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf | ⊢ -𝑒+∞ = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13152 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
2 | eqid 2735 | . . 3 ⊢ +∞ = +∞ | |
3 | 2 | iftruei 4538 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
4 | 1, 3 | eqtri 2763 | 1 ⊢ -𝑒+∞ = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4531 +∞cpnf 11290 -∞cmnf 11291 -cneg 11491 -𝑒cxne 13149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 df-xneg 13152 |
This theorem is referenced by: xnegcl 13252 xnegneg 13253 xltnegi 13255 xnegid 13277 xnegdi 13287 xaddass2 13289 xsubge0 13300 xlesubadd 13302 xmulneg1 13308 xmulmnf1 13315 xadddi2 13336 xrsdsreclblem 21448 xblss2ps 24427 xblss2 24428 xaddeq0 32764 supminfxr 45414 liminflbuz2 45771 |
Copyright terms: Public domain | W3C validator |