| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13014 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2729 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 4483 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2752 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4476 +∞cpnf 11146 -∞cmnf 11147 -cneg 11348 -𝑒cxne 13011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4477 df-xneg 13014 |
| This theorem is referenced by: xnegcl 13115 xnegneg 13116 xltnegi 13118 xnegid 13140 xnegdi 13150 xaddass2 13152 xsubge0 13163 xlesubadd 13165 xmulneg1 13171 xmulmnf1 13178 xadddi2 13199 xrsdsreclblem 21319 xblss2ps 24287 xblss2 24288 xaddeq0 32697 supminfxr 45453 liminflbuz2 45806 |
| Copyright terms: Public domain | W3C validator |