| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13011 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2731 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 4479 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2754 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ifcif 4472 +∞cpnf 11143 -∞cmnf 11144 -cneg 11345 -𝑒cxne 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4473 df-xneg 13011 |
| This theorem is referenced by: xnegcl 13112 xnegneg 13113 xltnegi 13115 xnegid 13137 xnegdi 13147 xaddass2 13149 xsubge0 13160 xlesubadd 13162 xmulneg1 13168 xmulmnf1 13175 xadddi2 13196 xrsdsreclblem 21349 xblss2ps 24316 xblss2 24317 xaddeq0 32736 supminfxr 45572 liminflbuz2 45923 |
| Copyright terms: Public domain | W3C validator |