Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version |
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf | ⊢ -𝑒+∞ = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12848 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
2 | eqid 2738 | . . 3 ⊢ +∞ = +∞ | |
3 | 2 | iftruei 4466 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
4 | 1, 3 | eqtri 2766 | 1 ⊢ -𝑒+∞ = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ifcif 4459 +∞cpnf 11006 -∞cmnf 11007 -cneg 11206 -𝑒cxne 12845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-if 4460 df-xneg 12848 |
This theorem is referenced by: xnegcl 12947 xnegneg 12948 xltnegi 12950 xnegid 12972 xnegdi 12982 xaddass2 12984 xsubge0 12995 xlesubadd 12997 xmulneg1 13003 xmulmnf1 13010 xadddi2 13031 xrsdsreclblem 20644 xblss2ps 23554 xblss2 23555 xaddeq0 31076 supminfxr 43004 liminflbuz2 43356 |
Copyright terms: Public domain | W3C validator |