| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13072 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2729 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 4495 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2752 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4488 +∞cpnf 11205 -∞cmnf 11206 -cneg 11406 -𝑒cxne 13069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 df-xneg 13072 |
| This theorem is referenced by: xnegcl 13173 xnegneg 13174 xltnegi 13176 xnegid 13198 xnegdi 13208 xaddass2 13210 xsubge0 13221 xlesubadd 13223 xmulneg1 13229 xmulmnf1 13236 xadddi2 13257 xrsdsreclblem 21329 xblss2ps 24289 xblss2 24290 xaddeq0 32676 supminfxr 45460 liminflbuz2 45813 |
| Copyright terms: Public domain | W3C validator |