| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13048 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2729 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 4491 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2752 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4484 +∞cpnf 11181 -∞cmnf 11182 -cneg 11382 -𝑒cxne 13045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4485 df-xneg 13048 |
| This theorem is referenced by: xnegcl 13149 xnegneg 13150 xltnegi 13152 xnegid 13174 xnegdi 13184 xaddass2 13186 xsubge0 13197 xlesubadd 13199 xmulneg1 13205 xmulmnf1 13212 xadddi2 13233 xrsdsreclblem 21354 xblss2ps 24322 xblss2 24323 xaddeq0 32726 supminfxr 45453 liminflbuz2 45806 |
| Copyright terms: Public domain | W3C validator |