| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13128 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2735 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 4507 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2758 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4500 +∞cpnf 11266 -∞cmnf 11267 -cneg 11467 -𝑒cxne 13125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 df-xneg 13128 |
| This theorem is referenced by: xnegcl 13229 xnegneg 13230 xltnegi 13232 xnegid 13254 xnegdi 13264 xaddass2 13266 xsubge0 13277 xlesubadd 13279 xmulneg1 13285 xmulmnf1 13292 xadddi2 13313 xrsdsreclblem 21380 xblss2ps 24340 xblss2 24341 xaddeq0 32730 supminfxr 45491 liminflbuz2 45844 |
| Copyright terms: Public domain | W3C validator |