MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegpnf Structured version   Visualization version   GIF version

Theorem xnegpnf 13225
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 13128 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2735 . . 3 +∞ = +∞
32iftruei 4507 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2758 1 -𝑒+∞ = -∞
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4500  +∞cpnf 11266  -∞cmnf 11267  -cneg 11467  -𝑒cxne 13125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-if 4501  df-xneg 13128
This theorem is referenced by:  xnegcl  13229  xnegneg  13230  xltnegi  13232  xnegid  13254  xnegdi  13264  xaddass2  13266  xsubge0  13277  xlesubadd  13279  xmulneg1  13285  xmulmnf1  13292  xadddi2  13313  xrsdsreclblem  21380  xblss2ps  24340  xblss2  24341  xaddeq0  32730  supminfxr  45491  liminflbuz2  45844
  Copyright terms: Public domain W3C validator