![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version |
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf | ⊢ -𝑒+∞ = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13175 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
2 | eqid 2740 | . . 3 ⊢ +∞ = +∞ | |
3 | 2 | iftruei 4555 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
4 | 1, 3 | eqtri 2768 | 1 ⊢ -𝑒+∞ = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4548 +∞cpnf 11321 -∞cmnf 11322 -cneg 11521 -𝑒cxne 13172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 df-xneg 13175 |
This theorem is referenced by: xnegcl 13275 xnegneg 13276 xltnegi 13278 xnegid 13300 xnegdi 13310 xaddass2 13312 xsubge0 13323 xlesubadd 13325 xmulneg1 13331 xmulmnf1 13338 xadddi2 13359 xrsdsreclblem 21453 xblss2ps 24432 xblss2 24433 xaddeq0 32760 supminfxr 45379 liminflbuz2 45736 |
Copyright terms: Public domain | W3C validator |