| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version | ||
| Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| xnegpnf | ⊢ -𝑒+∞ = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13079 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
| 2 | eqid 2730 | . . 3 ⊢ +∞ = +∞ | |
| 3 | 2 | iftruei 4498 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
| 4 | 1, 3 | eqtri 2753 | 1 ⊢ -𝑒+∞ = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4491 +∞cpnf 11212 -∞cmnf 11213 -cneg 11413 -𝑒cxne 13076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 df-xneg 13079 |
| This theorem is referenced by: xnegcl 13180 xnegneg 13181 xltnegi 13183 xnegid 13205 xnegdi 13215 xaddass2 13217 xsubge0 13228 xlesubadd 13230 xmulneg1 13236 xmulmnf1 13243 xadddi2 13264 xrsdsreclblem 21336 xblss2ps 24296 xblss2 24297 xaddeq0 32683 supminfxr 45467 liminflbuz2 45820 |
| Copyright terms: Public domain | W3C validator |