MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegpnf Structured version   Visualization version   GIF version

Theorem xnegpnf 13176
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 13079 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2730 . . 3 +∞ = +∞
32iftruei 4498 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2753 1 -𝑒+∞ = -∞
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4491  +∞cpnf 11212  -∞cmnf 11213  -cneg 11413  -𝑒cxne 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-if 4492  df-xneg 13079
This theorem is referenced by:  xnegcl  13180  xnegneg  13181  xltnegi  13183  xnegid  13205  xnegdi  13215  xaddass2  13217  xsubge0  13228  xlesubadd  13230  xmulneg1  13236  xmulmnf1  13243  xadddi2  13264  xrsdsreclblem  21336  xblss2ps  24296  xblss2  24297  xaddeq0  32683  supminfxr  45467  liminflbuz2  45820
  Copyright terms: Public domain W3C validator