Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version |
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf | ⊢ -𝑒+∞ = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12533 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
2 | eqid 2759 | . . 3 ⊢ +∞ = +∞ | |
3 | 2 | iftruei 4420 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
4 | 1, 3 | eqtri 2782 | 1 ⊢ -𝑒+∞ = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ifcif 4413 +∞cpnf 10695 -∞cmnf 10696 -cneg 10894 -𝑒cxne 12530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-if 4414 df-xneg 12533 |
This theorem is referenced by: xnegcl 12632 xnegneg 12633 xltnegi 12635 xnegid 12657 xnegdi 12667 xaddass2 12669 xsubge0 12680 xlesubadd 12682 xmulneg1 12688 xmulmnf1 12695 xadddi2 12716 xrsdsreclblem 20197 xblss2ps 23088 xblss2 23089 xaddeq0 30585 supminfxr 42454 liminflbuz2 42808 |
Copyright terms: Public domain | W3C validator |