MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegpnf Structured version   Visualization version   GIF version

Theorem xnegpnf 12872
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 12777 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2738 . . 3 +∞ = +∞
32iftruei 4463 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2766 1 -𝑒+∞ = -∞
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ifcif 4456  +∞cpnf 10937  -∞cmnf 10938  -cneg 11136  -𝑒cxne 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-if 4457  df-xneg 12777
This theorem is referenced by:  xnegcl  12876  xnegneg  12877  xltnegi  12879  xnegid  12901  xnegdi  12911  xaddass2  12913  xsubge0  12924  xlesubadd  12926  xmulneg1  12932  xmulmnf1  12939  xadddi2  12960  xrsdsreclblem  20556  xblss2ps  23462  xblss2  23463  xaddeq0  30978  supminfxr  42894  liminflbuz2  43246
  Copyright terms: Public domain W3C validator