MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegpnf Structured version   Visualization version   GIF version

Theorem xnegpnf 13251
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 13154 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2737 . . 3 +∞ = +∞
32iftruei 4532 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2765 1 -𝑒+∞ = -∞
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4525  +∞cpnf 11292  -∞cmnf 11293  -cneg 11493  -𝑒cxne 13151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-if 4526  df-xneg 13154
This theorem is referenced by:  xnegcl  13255  xnegneg  13256  xltnegi  13258  xnegid  13280  xnegdi  13290  xaddass2  13292  xsubge0  13303  xlesubadd  13305  xmulneg1  13311  xmulmnf1  13318  xadddi2  13339  xrsdsreclblem  21430  xblss2ps  24411  xblss2  24412  xaddeq0  32757  supminfxr  45475  liminflbuz2  45830
  Copyright terms: Public domain W3C validator