![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version |
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf | ⊢ -𝑒+∞ = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13096 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
2 | eqid 2730 | . . 3 ⊢ +∞ = +∞ | |
3 | 2 | iftruei 4534 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
4 | 1, 3 | eqtri 2758 | 1 ⊢ -𝑒+∞ = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ifcif 4527 +∞cpnf 11249 -∞cmnf 11250 -cneg 11449 -𝑒cxne 13093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-if 4528 df-xneg 13096 |
This theorem is referenced by: xnegcl 13196 xnegneg 13197 xltnegi 13199 xnegid 13221 xnegdi 13231 xaddass2 13233 xsubge0 13244 xlesubadd 13246 xmulneg1 13252 xmulmnf1 13259 xadddi2 13280 xrsdsreclblem 21191 xblss2ps 24127 xblss2 24128 xaddeq0 32233 supminfxr 44472 liminflbuz2 44829 |
Copyright terms: Public domain | W3C validator |