Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegpnf | Structured version Visualization version GIF version |
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf | ⊢ -𝑒+∞ = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12777 | . 2 ⊢ -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) | |
2 | eqid 2738 | . . 3 ⊢ +∞ = +∞ | |
3 | 2 | iftruei 4463 | . 2 ⊢ if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞ |
4 | 1, 3 | eqtri 2766 | 1 ⊢ -𝑒+∞ = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ifcif 4456 +∞cpnf 10937 -∞cmnf 10938 -cneg 11136 -𝑒cxne 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 df-xneg 12777 |
This theorem is referenced by: xnegcl 12876 xnegneg 12877 xltnegi 12879 xnegid 12901 xnegdi 12911 xaddass2 12913 xsubge0 12924 xlesubadd 12926 xmulneg1 12932 xmulmnf1 12939 xadddi2 12960 xrsdsreclblem 20556 xblss2ps 23462 xblss2 23463 xaddeq0 30978 supminfxr 42894 liminflbuz2 43246 |
Copyright terms: Public domain | W3C validator |