MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegpnf Structured version   Visualization version   GIF version

Theorem xnegpnf 13271
Description: Minus +∞. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf -𝑒+∞ = -∞

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 13175 . 2 -𝑒+∞ = if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞))
2 eqid 2740 . . 3 +∞ = +∞
32iftruei 4555 . 2 if(+∞ = +∞, -∞, if(+∞ = -∞, +∞, -+∞)) = -∞
41, 3eqtri 2768 1 -𝑒+∞ = -∞
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ifcif 4548  +∞cpnf 11321  -∞cmnf 11322  -cneg 11521  -𝑒cxne 13172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-if 4549  df-xneg 13175
This theorem is referenced by:  xnegcl  13275  xnegneg  13276  xltnegi  13278  xnegid  13300  xnegdi  13310  xaddass2  13312  xsubge0  13323  xlesubadd  13325  xmulneg1  13331  xmulmnf1  13338  xadddi2  13359  xrsdsreclblem  21453  xblss2ps  24432  xblss2  24433  xaddeq0  32760  supminfxr  45379  liminflbuz2  45736
  Copyright terms: Public domain W3C validator