| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxnegd | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfxneg 45569. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| nfxnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfxnegd | ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13011 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | nfxnegd.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfcvd 2895 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥+∞) | |
| 4 | 2, 3 | nfeqd 2905 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = +∞) |
| 5 | nfcvd 2895 | . . 3 ⊢ (𝜑 → Ⅎ𝑥-∞) | |
| 6 | 2, 5 | nfeqd 2905 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = -∞) |
| 7 | 2 | nfnegd 11355 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
| 8 | 6, 3, 7 | nfifd 4502 | . . 3 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = -∞, +∞, -𝐴)) |
| 9 | 4, 5, 8 | nfifd 4502 | . 2 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))) |
| 10 | 1, 9 | nfcxfrd 2893 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnfc 2879 ifcif 4472 +∞cpnf 11143 -∞cmnf 11144 -cneg 11345 -𝑒cxne 13008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-neg 11347 df-xneg 13011 |
| This theorem is referenced by: nfxneg 45569 |
| Copyright terms: Public domain | W3C validator |