![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxnegd | Structured version Visualization version GIF version |
Description: Deduction version of nfxneg 45376. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nfxnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfxnegd | ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13175 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | nfxnegd.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfcvd 2909 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥+∞) | |
4 | 2, 3 | nfeqd 2919 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = +∞) |
5 | nfcvd 2909 | . . 3 ⊢ (𝜑 → Ⅎ𝑥-∞) | |
6 | 2, 5 | nfeqd 2919 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = -∞) |
7 | 2 | nfnegd 11531 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
8 | 6, 3, 7 | nfifd 4577 | . . 3 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = -∞, +∞, -𝐴)) |
9 | 4, 5, 8 | nfifd 4577 | . 2 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))) |
10 | 1, 9 | nfcxfrd 2907 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Ⅎwnfc 2893 ifcif 4548 +∞cpnf 11321 -∞cmnf 11322 -cneg 11521 -𝑒cxne 13172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 df-xneg 13175 |
This theorem is referenced by: nfxneg 45376 |
Copyright terms: Public domain | W3C validator |