Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfxnegd Structured version   Visualization version   GIF version

Theorem nfxnegd 43325
Description: Deduction version of nfxneg 43345. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
nfxnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfxnegd (𝜑𝑥-𝑒𝐴)

Proof of Theorem nfxnegd
StepHypRef Expression
1 df-xneg 12949 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 nfxnegd.1 . . . 4 (𝜑𝑥𝐴)
3 nfcvd 2905 . . . 4 (𝜑𝑥+∞)
42, 3nfeqd 2914 . . 3 (𝜑 → Ⅎ𝑥 𝐴 = +∞)
5 nfcvd 2905 . . 3 (𝜑𝑥-∞)
62, 5nfeqd 2914 . . . 4 (𝜑 → Ⅎ𝑥 𝐴 = -∞)
72nfnegd 11317 . . . 4 (𝜑𝑥-𝐴)
86, 3, 7nfifd 4502 . . 3 (𝜑𝑥if(𝐴 = -∞, +∞, -𝐴))
94, 5, 8nfifd 4502 . 2 (𝜑𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)))
101, 9nfcxfrd 2903 1 (𝜑𝑥-𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2884  ifcif 4473  +∞cpnf 11107  -∞cmnf 11108  -cneg 11307  -𝑒cxne 12946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-iota 6431  df-fv 6487  df-ov 7340  df-neg 11309  df-xneg 12949
This theorem is referenced by:  nfxneg  43345
  Copyright terms: Public domain W3C validator