Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfxnegd Structured version   Visualization version   GIF version

Theorem nfxnegd 44704
Description: Deduction version of nfxneg 44724. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
nfxnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfxnegd (𝜑𝑥-𝑒𝐴)

Proof of Theorem nfxnegd
StepHypRef Expression
1 df-xneg 13095 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 nfxnegd.1 . . . 4 (𝜑𝑥𝐴)
3 nfcvd 2898 . . . 4 (𝜑𝑥+∞)
42, 3nfeqd 2907 . . 3 (𝜑 → Ⅎ𝑥 𝐴 = +∞)
5 nfcvd 2898 . . 3 (𝜑𝑥-∞)
62, 5nfeqd 2907 . . . 4 (𝜑 → Ⅎ𝑥 𝐴 = -∞)
72nfnegd 11456 . . . 4 (𝜑𝑥-𝐴)
86, 3, 7nfifd 4552 . . 3 (𝜑𝑥if(𝐴 = -∞, +∞, -𝐴))
94, 5, 8nfifd 4552 . 2 (𝜑𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)))
101, 9nfcxfrd 2896 1 (𝜑𝑥-𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wnfc 2877  ifcif 4523  +∞cpnf 11246  -∞cmnf 11247  -cneg 11446  -𝑒cxne 13092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6488  df-fv 6544  df-ov 7407  df-neg 11448  df-xneg 13095
This theorem is referenced by:  nfxneg  44724
  Copyright terms: Public domain W3C validator