![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxnegd | Structured version Visualization version GIF version |
Description: Deduction version of nfxneg 44161. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nfxnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfxnegd | ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13091 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | nfxnegd.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfcvd 2904 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥+∞) | |
4 | 2, 3 | nfeqd 2913 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = +∞) |
5 | nfcvd 2904 | . . 3 ⊢ (𝜑 → Ⅎ𝑥-∞) | |
6 | 2, 5 | nfeqd 2913 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = -∞) |
7 | 2 | nfnegd 11454 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
8 | 6, 3, 7 | nfifd 4557 | . . 3 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = -∞, +∞, -𝐴)) |
9 | 4, 5, 8 | nfifd 4557 | . 2 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))) |
10 | 1, 9 | nfcxfrd 2902 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Ⅎwnfc 2883 ifcif 4528 +∞cpnf 11244 -∞cmnf 11245 -cneg 11444 -𝑒cxne 13088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-neg 11446 df-xneg 13091 |
This theorem is referenced by: nfxneg 44161 |
Copyright terms: Public domain | W3C validator |