| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxnegd | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfxneg 45457. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| nfxnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfxnegd | ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13072 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | nfxnegd.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfcvd 2892 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥+∞) | |
| 4 | 2, 3 | nfeqd 2902 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = +∞) |
| 5 | nfcvd 2892 | . . 3 ⊢ (𝜑 → Ⅎ𝑥-∞) | |
| 6 | 2, 5 | nfeqd 2902 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = -∞) |
| 7 | 2 | nfnegd 11416 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
| 8 | 6, 3, 7 | nfifd 4518 | . . 3 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = -∞, +∞, -𝐴)) |
| 9 | 4, 5, 8 | nfifd 4518 | . 2 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))) |
| 10 | 1, 9 | nfcxfrd 2890 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2876 ifcif 4488 +∞cpnf 11205 -∞cmnf 11206 -cneg 11406 -𝑒cxne 13069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 df-xneg 13072 |
| This theorem is referenced by: nfxneg 45457 |
| Copyright terms: Public domain | W3C validator |