Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxnegd | Structured version Visualization version GIF version |
Description: Deduction version of nfxneg 42891. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nfxnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfxnegd | ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12777 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | nfxnegd.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfcvd 2907 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥+∞) | |
4 | 2, 3 | nfeqd 2916 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = +∞) |
5 | nfcvd 2907 | . . 3 ⊢ (𝜑 → Ⅎ𝑥-∞) | |
6 | 2, 5 | nfeqd 2916 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = -∞) |
7 | 2 | nfnegd 11146 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
8 | 6, 3, 7 | nfifd 4485 | . . 3 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = -∞, +∞, -𝐴)) |
9 | 4, 5, 8 | nfifd 4485 | . 2 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))) |
10 | 1, 9 | nfcxfrd 2905 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2886 ifcif 4456 +∞cpnf 10937 -∞cmnf 10938 -cneg 11136 -𝑒cxne 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-neg 11138 df-xneg 12777 |
This theorem is referenced by: nfxneg 42891 |
Copyright terms: Public domain | W3C validator |