Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfxnegd Structured version   Visualization version   GIF version

Theorem nfxnegd 45435
Description: Deduction version of nfxneg 45455. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
nfxnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfxnegd (𝜑𝑥-𝑒𝐴)

Proof of Theorem nfxnegd
StepHypRef Expression
1 df-xneg 13133 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 nfxnegd.1 . . . 4 (𝜑𝑥𝐴)
3 nfcvd 2900 . . . 4 (𝜑𝑥+∞)
42, 3nfeqd 2910 . . 3 (𝜑 → Ⅎ𝑥 𝐴 = +∞)
5 nfcvd 2900 . . 3 (𝜑𝑥-∞)
62, 5nfeqd 2910 . . . 4 (𝜑 → Ⅎ𝑥 𝐴 = -∞)
72nfnegd 11482 . . . 4 (𝜑𝑥-𝐴)
86, 3, 7nfifd 4535 . . 3 (𝜑𝑥if(𝐴 = -∞, +∞, -𝐴))
94, 5, 8nfifd 4535 . 2 (𝜑𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)))
101, 9nfcxfrd 2898 1 (𝜑𝑥-𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2884  ifcif 4505  +∞cpnf 11271  -∞cmnf 11272  -cneg 11472  -𝑒cxne 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-neg 11474  df-xneg 13133
This theorem is referenced by:  nfxneg  45455
  Copyright terms: Public domain W3C validator