Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfxnegd Structured version   Visualization version   GIF version

Theorem nfxnegd 45549
Description: Deduction version of nfxneg 45569. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
nfxnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfxnegd (𝜑𝑥-𝑒𝐴)

Proof of Theorem nfxnegd
StepHypRef Expression
1 df-xneg 13011 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 nfxnegd.1 . . . 4 (𝜑𝑥𝐴)
3 nfcvd 2895 . . . 4 (𝜑𝑥+∞)
42, 3nfeqd 2905 . . 3 (𝜑 → Ⅎ𝑥 𝐴 = +∞)
5 nfcvd 2895 . . 3 (𝜑𝑥-∞)
62, 5nfeqd 2905 . . . 4 (𝜑 → Ⅎ𝑥 𝐴 = -∞)
72nfnegd 11355 . . . 4 (𝜑𝑥-𝐴)
86, 3, 7nfifd 4502 . . 3 (𝜑𝑥if(𝐴 = -∞, +∞, -𝐴))
94, 5, 8nfifd 4502 . 2 (𝜑𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)))
101, 9nfcxfrd 2893 1 (𝜑𝑥-𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wnfc 2879  ifcif 4472  +∞cpnf 11143  -∞cmnf 11144  -cneg 11345  -𝑒cxne 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-neg 11347  df-xneg 13011
This theorem is referenced by:  nfxneg  45569
  Copyright terms: Public domain W3C validator