Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfxnegd | Structured version Visualization version GIF version |
Description: Deduction version of nfxneg 43345. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nfxnegd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfxnegd | ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12949 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | nfxnegd.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfcvd 2905 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥+∞) | |
4 | 2, 3 | nfeqd 2914 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = +∞) |
5 | nfcvd 2905 | . . 3 ⊢ (𝜑 → Ⅎ𝑥-∞) | |
6 | 2, 5 | nfeqd 2914 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = -∞) |
7 | 2 | nfnegd 11317 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
8 | 6, 3, 7 | nfifd 4502 | . . 3 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = -∞, +∞, -𝐴)) |
9 | 4, 5, 8 | nfifd 4502 | . 2 ⊢ (𝜑 → Ⅎ𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))) |
10 | 1, 9 | nfcxfrd 2903 | 1 ⊢ (𝜑 → Ⅎ𝑥-𝑒𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2884 ifcif 4473 +∞cpnf 11107 -∞cmnf 11108 -cneg 11307 -𝑒cxne 12946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-iota 6431 df-fv 6487 df-ov 7340 df-neg 11309 df-xneg 12949 |
This theorem is referenced by: nfxneg 43345 |
Copyright terms: Public domain | W3C validator |