Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfxnegd Structured version   Visualization version   GIF version

Theorem nfxnegd 44141
Description: Deduction version of nfxneg 44161. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
nfxnegd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfxnegd (𝜑𝑥-𝑒𝐴)

Proof of Theorem nfxnegd
StepHypRef Expression
1 df-xneg 13091 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 nfxnegd.1 . . . 4 (𝜑𝑥𝐴)
3 nfcvd 2904 . . . 4 (𝜑𝑥+∞)
42, 3nfeqd 2913 . . 3 (𝜑 → Ⅎ𝑥 𝐴 = +∞)
5 nfcvd 2904 . . 3 (𝜑𝑥-∞)
62, 5nfeqd 2913 . . . 4 (𝜑 → Ⅎ𝑥 𝐴 = -∞)
72nfnegd 11454 . . . 4 (𝜑𝑥-𝐴)
86, 3, 7nfifd 4557 . . 3 (𝜑𝑥if(𝐴 = -∞, +∞, -𝐴))
94, 5, 8nfifd 4557 . 2 (𝜑𝑥if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)))
101, 9nfcxfrd 2902 1 (𝜑𝑥-𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wnfc 2883  ifcif 4528  +∞cpnf 11244  -∞cmnf 11245  -cneg 11444  -𝑒cxne 13088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-neg 11446  df-xneg 13091
This theorem is referenced by:  nfxneg  44161
  Copyright terms: Public domain W3C validator