| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexneg | Structured version Visualization version GIF version | ||
| Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| rexneg | ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13154 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | renepnf 11309 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | ifnefalse 4537 | . . . 4 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) |
| 5 | renemnf 11310 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 6 | ifnefalse 4537 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) |
| 8 | 4, 7 | eqtrd 2777 | . 2 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴) |
| 9 | 1, 8 | eqtrid 2789 | 1 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ifcif 4525 ℝcr 11154 +∞cpnf 11292 -∞cmnf 11293 -cneg 11493 -𝑒cxne 13151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xneg 13154 |
| This theorem is referenced by: xneg0 13254 xnegcl 13255 xnegneg 13256 xltnegi 13258 rexsub 13275 xnegid 13280 xnegdi 13290 xpncan 13293 xnpcan 13294 xmulneg1 13311 xmulm1 13323 xadddi 13337 xlt2addrd 32762 xrsmulgzz 33011 rexnegd 45148 xnegrecl 45449 |
| Copyright terms: Public domain | W3C validator |