| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexneg | Structured version Visualization version GIF version | ||
| Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| rexneg | ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13014 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | renepnf 11163 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | ifnefalse 4488 | . . . 4 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) |
| 5 | renemnf 11164 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 6 | ifnefalse 4488 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) |
| 8 | 4, 7 | eqtrd 2764 | . 2 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴) |
| 9 | 1, 8 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ifcif 4476 ℝcr 11008 +∞cpnf 11146 -∞cmnf 11147 -cneg 11348 -𝑒cxne 13011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xneg 13014 |
| This theorem is referenced by: xneg0 13114 xnegcl 13115 xnegneg 13116 xltnegi 13118 rexsub 13135 xnegid 13140 xnegdi 13150 xpncan 13153 xnpcan 13154 xmulneg1 13171 xmulm1 13183 xadddi 13197 xlt2addrd 32702 xrsmulgzz 32963 rexnegd 45121 xnegrecl 45417 |
| Copyright terms: Public domain | W3C validator |