MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexneg Structured version   Visualization version   GIF version

Theorem rexneg 12945
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexneg (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)

Proof of Theorem rexneg
StepHypRef Expression
1 df-xneg 12848 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 renepnf 11023 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
3 ifnefalse 4471 . . . 4 (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
42, 3syl 17 . . 3 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴))
5 renemnf 11024 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
6 ifnefalse 4471 . . . 4 (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
75, 6syl 17 . . 3 (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴)
84, 7eqtrd 2778 . 2 (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴)
91, 8eqtrid 2790 1 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  ifcif 4459  cr 10870  +∞cpnf 11006  -∞cmnf 11007  -cneg 11206  -𝑒cxne 12845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xneg 12848
This theorem is referenced by:  xneg0  12946  xnegcl  12947  xnegneg  12948  xltnegi  12950  rexsub  12967  xnegid  12972  xnegdi  12982  xpncan  12985  xnpcan  12986  xmulneg1  13003  xmulm1  13015  xadddi  13029  xlt2addrd  31081  xrsmulgzz  31287  rexnegd  42692  xnegrecl  42978
  Copyright terms: Public domain W3C validator