![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexneg | Structured version Visualization version GIF version |
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
rexneg | ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12193 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | renepnf 10376 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | ifnefalse 4289 | . . . 4 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) |
5 | renemnf 10377 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
6 | ifnefalse 4289 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) |
8 | 4, 7 | eqtrd 2833 | . 2 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴) |
9 | 1, 8 | syl5eq 2845 | 1 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ifcif 4277 ℝcr 10223 +∞cpnf 10360 -∞cmnf 10361 -cneg 10557 -𝑒cxne 12190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xneg 12193 |
This theorem is referenced by: xneg0 12292 xnegcl 12293 xnegneg 12294 xltnegi 12296 rexsub 12313 xnegid 12318 xnegdi 12327 xpncan 12330 xnpcan 12331 xmulneg1 12348 xmulm1 12360 xadddi 12374 xlt2addrd 30041 xrsmulgzz 30194 rexnegd 40089 xnegrecl 40408 |
Copyright terms: Public domain | W3C validator |