![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexneg | Structured version Visualization version GIF version |
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
rexneg | ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13175 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | renepnf 11338 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | ifnefalse 4560 | . . . 4 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐴 = -∞, +∞, -𝐴)) |
5 | renemnf 11339 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
6 | ifnefalse 4560 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, +∞, -𝐴) = -𝐴) |
8 | 4, 7 | eqtrd 2780 | . 2 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = -𝐴) |
9 | 1, 8 | eqtrid 2792 | 1 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ifcif 4548 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 -cneg 11521 -𝑒cxne 13172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xneg 13175 |
This theorem is referenced by: xneg0 13274 xnegcl 13275 xnegneg 13276 xltnegi 13278 rexsub 13295 xnegid 13300 xnegdi 13310 xpncan 13313 xnpcan 13314 xmulneg1 13331 xmulm1 13343 xadddi 13357 xlt2addrd 32765 xrsmulgzz 32992 rexnegd 45045 xnegrecl 45353 |
Copyright terms: Public domain | W3C validator |