MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegeq Structured version   Visualization version   GIF version

Theorem xnegeq 13143
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegeq (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)

Proof of Theorem xnegeq
StepHypRef Expression
1 eqeq1 2733 . . 3 (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞))
2 eqeq1 2733 . . . 4 (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞))
3 negeq 11389 . . . 4 (𝐴 = 𝐵 → -𝐴 = -𝐵)
42, 3ifbieq2d 4511 . . 3 (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵))
51, 4ifbieq2d 4511 . 2 (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)))
6 df-xneg 13048 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
7 df-xneg 13048 . 2 -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))
85, 6, 73eqtr4g 2789 1 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4484  +∞cpnf 11181  -∞cmnf 11182  -cneg 11382  -𝑒cxne 13045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-neg 11384  df-xneg 13048
This theorem is referenced by:  xnegcl  13149  xnegneg  13150  xneg11  13151  xltnegi  13152  xnegid  13174  xnegdi  13184  xsubge0  13197  xlesubadd  13199  xmulneg1  13205  xmulneg2  13206  xmulmnf1  13212  xmulm1  13217  xrsdsval  21352  xrsdsreclblem  21354  xblss2ps  24322  xblss2  24323  xrhmeo  24877  xaddeq0  32726  xrsmulgzz  32993  xrge0npcan  33004  carsgclctunlem2  34303  xnegeqd  45426  xnegeqi  45429  supminfxr2  45458  supminfxrrnmpt  45460  liminflbuz2  45806
  Copyright terms: Public domain W3C validator