| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegeq | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegeq | ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞)) | |
| 2 | eqeq1 2733 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞)) | |
| 3 | negeq 11355 | . . . 4 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 4 | 2, 3 | ifbieq2d 4503 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵)) |
| 5 | 1, 4 | ifbieq2d 4503 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))) |
| 6 | df-xneg 13014 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 7 | df-xneg 13014 | . 2 ⊢ -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)) | |
| 8 | 5, 6, 7 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4476 +∞cpnf 11146 -∞cmnf 11147 -cneg 11348 -𝑒cxne 13011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-neg 11350 df-xneg 13014 |
| This theorem is referenced by: xnegcl 13115 xnegneg 13116 xneg11 13117 xltnegi 13118 xnegid 13140 xnegdi 13150 xsubge0 13163 xlesubadd 13165 xmulneg1 13171 xmulneg2 13172 xmulmnf1 13178 xmulm1 13183 xrsdsval 21317 xrsdsreclblem 21319 xblss2ps 24287 xblss2 24288 xrhmeo 24842 xaddeq0 32697 xrsmulgzz 32964 xrge0npcan 32975 carsgclctunlem2 34293 xnegeqd 45426 xnegeqi 45429 supminfxr2 45458 supminfxrrnmpt 45460 liminflbuz2 45806 |
| Copyright terms: Public domain | W3C validator |