![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegeq | Structured version Visualization version GIF version |
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegeq | ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞)) | |
2 | eqeq1 2744 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞)) | |
3 | negeq 11528 | . . . 4 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
4 | 2, 3 | ifbieq2d 4574 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵)) |
5 | 1, 4 | ifbieq2d 4574 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))) |
6 | df-xneg 13175 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
7 | df-xneg 13175 | . 2 ⊢ -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)) | |
8 | 5, 6, 7 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4548 +∞cpnf 11321 -∞cmnf 11322 -cneg 11521 -𝑒cxne 13172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-neg 11523 df-xneg 13175 |
This theorem is referenced by: xnegcl 13275 xnegneg 13276 xneg11 13277 xltnegi 13278 xnegid 13300 xnegdi 13310 xsubge0 13323 xlesubadd 13325 xmulneg1 13331 xmulneg2 13332 xmulmnf1 13338 xmulm1 13343 xrsdsval 21451 xrsdsreclblem 21453 xblss2ps 24432 xblss2 24433 xrhmeo 24996 xaddeq0 32760 xrsmulgzz 32992 xrge0npcan 33006 carsgclctunlem2 34284 xnegeqd 45352 xnegeqi 45355 supminfxr2 45384 supminfxrrnmpt 45386 liminflbuz2 45736 |
Copyright terms: Public domain | W3C validator |