| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegeq | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegeq | ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞)) | |
| 2 | eqeq1 2733 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞)) | |
| 3 | negeq 11413 | . . . 4 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 4 | 2, 3 | ifbieq2d 4515 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵)) |
| 5 | 1, 4 | ifbieq2d 4515 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))) |
| 6 | df-xneg 13072 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 7 | df-xneg 13072 | . 2 ⊢ -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)) | |
| 8 | 5, 6, 7 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4488 +∞cpnf 11205 -∞cmnf 11206 -cneg 11406 -𝑒cxne 13069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-neg 11408 df-xneg 13072 |
| This theorem is referenced by: xnegcl 13173 xnegneg 13174 xneg11 13175 xltnegi 13176 xnegid 13198 xnegdi 13208 xsubge0 13221 xlesubadd 13223 xmulneg1 13229 xmulneg2 13230 xmulmnf1 13236 xmulm1 13241 xrsdsval 21327 xrsdsreclblem 21329 xblss2ps 24289 xblss2 24290 xrhmeo 24844 xaddeq0 32676 xrsmulgzz 32947 xrge0npcan 32961 carsgclctunlem2 34310 xnegeqd 45433 xnegeqi 45436 supminfxr2 45465 supminfxrrnmpt 45467 liminflbuz2 45813 |
| Copyright terms: Public domain | W3C validator |