| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegeq | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegeq | ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = +∞ ↔ 𝐵 = +∞)) | |
| 2 | eqeq1 2733 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = -∞ ↔ 𝐵 = -∞)) | |
| 3 | negeq 11389 | . . . 4 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
| 4 | 2, 3 | ifbieq2d 4511 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝐴 = -∞, +∞, -𝐴) = if(𝐵 = -∞, +∞, -𝐵)) |
| 5 | 1, 4 | ifbieq2d 4511 | . 2 ⊢ (𝐴 = 𝐵 → if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵))) |
| 6 | df-xneg 13048 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 7 | df-xneg 13048 | . 2 ⊢ -𝑒𝐵 = if(𝐵 = +∞, -∞, if(𝐵 = -∞, +∞, -𝐵)) | |
| 8 | 5, 6, 7 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4484 +∞cpnf 11181 -∞cmnf 11182 -cneg 11382 -𝑒cxne 13045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-neg 11384 df-xneg 13048 |
| This theorem is referenced by: xnegcl 13149 xnegneg 13150 xneg11 13151 xltnegi 13152 xnegid 13174 xnegdi 13184 xsubge0 13197 xlesubadd 13199 xmulneg1 13205 xmulneg2 13206 xmulmnf1 13212 xmulm1 13217 xrsdsval 21352 xrsdsreclblem 21354 xblss2ps 24322 xblss2 24323 xrhmeo 24877 xaddeq0 32726 xrsmulgzz 32993 xrge0npcan 33004 carsgclctunlem2 34303 xnegeqd 45426 xnegeqi 45429 supminfxr2 45458 supminfxrrnmpt 45460 liminflbuz2 45806 |
| Copyright terms: Public domain | W3C validator |