![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version |
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegex | ⊢ -𝑒𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12318 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | mnfxr 10492 | . . . 4 ⊢ -∞ ∈ ℝ* | |
3 | 2 | elexi 3428 | . . 3 ⊢ -∞ ∈ V |
4 | pnfex 10487 | . . . 4 ⊢ +∞ ∈ V | |
5 | negex 10678 | . . . 4 ⊢ -𝐴 ∈ V | |
6 | 4, 5 | ifex 4392 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
7 | 3, 6 | ifex 4392 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
8 | 1, 7 | eqeltri 2856 | 1 ⊢ -𝑒𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 Vcvv 3409 ifcif 4344 +∞cpnf 10465 -∞cmnf 10466 ℝ*cxr 10467 -cneg 10665 -𝑒cxne 12315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-un 7273 ax-cnex 10385 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-uni 4707 df-iota 6146 df-fv 6190 df-ov 6973 df-pnf 10470 df-mnf 10471 df-xr 10472 df-neg 10667 df-xneg 12318 |
This theorem is referenced by: xrhmeo 23247 supminfxrrnmpt 41178 monoord2xrv 41191 liminfvalxr 41495 liminfpnfuz 41528 xlimpnfxnegmnf2 41570 |
Copyright terms: Public domain | W3C validator |