MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegex Structured version   Visualization version   GIF version

Theorem xnegex 13272
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegex -𝑒𝐴 ∈ V

Proof of Theorem xnegex
StepHypRef Expression
1 df-xneg 13177 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 mnfxr 11349 . . . 4 -∞ ∈ ℝ*
32elexi 3511 . . 3 -∞ ∈ V
4 pnfex 11345 . . . 4 +∞ ∈ V
5 negex 11536 . . . 4 -𝐴 ∈ V
64, 5ifex 4598 . . 3 if(𝐴 = -∞, +∞, -𝐴) ∈ V
73, 6ifex 4598 . 2 if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V
81, 7eqeltri 2840 1 -𝑒𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  ifcif 4548  +∞cpnf 11323  -∞cmnf 11324  *cxr 11325  -cneg 11523  -𝑒cxne 13174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-un 7772  ax-cnex 11242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6527  df-fv 6583  df-ov 7453  df-pnf 11328  df-mnf 11329  df-xr 11330  df-neg 11525  df-xneg 13177
This theorem is referenced by:  xrhmeo  24998  supminfxrrnmpt  45388  monoord2xrv  45401  liminfvalxr  45706  liminfpnfuz  45739  xlimpnfxnegmnf2  45781
  Copyright terms: Public domain W3C validator