| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version | ||
| Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegex | ⊢ -𝑒𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13078 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | mnfxr 11237 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | elexi 3473 | . . 3 ⊢ -∞ ∈ V |
| 4 | pnfex 11233 | . . . 4 ⊢ +∞ ∈ V | |
| 5 | negex 11425 | . . . 4 ⊢ -𝐴 ∈ V | |
| 6 | 4, 5 | ifex 4541 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
| 7 | 3, 6 | ifex 4541 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
| 8 | 1, 7 | eqeltri 2825 | 1 ⊢ -𝑒𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4490 +∞cpnf 11211 -∞cmnf 11212 ℝ*cxr 11213 -cneg 11412 -𝑒cxne 13075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-un 7713 ax-cnex 11130 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-uni 4874 df-iota 6466 df-fv 6521 df-ov 7392 df-pnf 11216 df-mnf 11217 df-xr 11218 df-neg 11414 df-xneg 13078 |
| This theorem is referenced by: xrhmeo 24850 supminfxrrnmpt 45460 monoord2xrv 45472 liminfvalxr 45774 liminfpnfuz 45807 xlimpnfxnegmnf2 45849 |
| Copyright terms: Public domain | W3C validator |