MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegex Structured version   Visualization version   GIF version

Theorem xnegex 13256
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegex -𝑒𝐴 ∈ V

Proof of Theorem xnegex
StepHypRef Expression
1 df-xneg 13161 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 mnfxr 11325 . . . 4 -∞ ∈ ℝ*
32elexi 3504 . . 3 -∞ ∈ V
4 pnfex 11321 . . . 4 +∞ ∈ V
5 negex 11513 . . . 4 -𝐴 ∈ V
64, 5ifex 4584 . . 3 if(𝐴 = -∞, +∞, -𝐴) ∈ V
73, 6ifex 4584 . 2 if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V
81, 7eqeltri 2837 1 -𝑒𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3481  ifcif 4534  +∞cpnf 11299  -∞cmnf 11300  *cxr 11301  -cneg 11500  -𝑒cxne 13158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-un 7761  ax-cnex 11218
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-uni 4916  df-iota 6522  df-fv 6577  df-ov 7441  df-pnf 11304  df-mnf 11305  df-xr 11306  df-neg 11502  df-xneg 13161
This theorem is referenced by:  xrhmeo  25002  supminfxrrnmpt  45450  monoord2xrv  45463  liminfvalxr  45767  liminfpnfuz  45800  xlimpnfxnegmnf2  45842
  Copyright terms: Public domain W3C validator