![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version |
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegex | ⊢ -𝑒𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13177 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | mnfxr 11349 | . . . 4 ⊢ -∞ ∈ ℝ* | |
3 | 2 | elexi 3511 | . . 3 ⊢ -∞ ∈ V |
4 | pnfex 11345 | . . . 4 ⊢ +∞ ∈ V | |
5 | negex 11536 | . . . 4 ⊢ -𝐴 ∈ V | |
6 | 4, 5 | ifex 4598 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
7 | 3, 6 | ifex 4598 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
8 | 1, 7 | eqeltri 2840 | 1 ⊢ -𝑒𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ifcif 4548 +∞cpnf 11323 -∞cmnf 11324 ℝ*cxr 11325 -cneg 11523 -𝑒cxne 13174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-un 7772 ax-cnex 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6527 df-fv 6583 df-ov 7453 df-pnf 11328 df-mnf 11329 df-xr 11330 df-neg 11525 df-xneg 13177 |
This theorem is referenced by: xrhmeo 24998 supminfxrrnmpt 45388 monoord2xrv 45401 liminfvalxr 45706 liminfpnfuz 45739 xlimpnfxnegmnf2 45781 |
Copyright terms: Public domain | W3C validator |