MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegex Structured version   Visualization version   GIF version

Theorem xnegex 13232
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegex -𝑒𝐴 ∈ V

Proof of Theorem xnegex
StepHypRef Expression
1 df-xneg 13136 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 mnfxr 11300 . . . 4 -∞ ∈ ℝ*
32elexi 3486 . . 3 -∞ ∈ V
4 pnfex 11296 . . . 4 +∞ ∈ V
5 negex 11488 . . . 4 -𝐴 ∈ V
64, 5ifex 4556 . . 3 if(𝐴 = -∞, +∞, -𝐴) ∈ V
73, 6ifex 4556 . 2 if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V
81, 7eqeltri 2829 1 -𝑒𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  Vcvv 3463  ifcif 4505  +∞cpnf 11274  -∞cmnf 11275  *cxr 11276  -cneg 11475  -𝑒cxne 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-un 7737  ax-cnex 11193
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-uni 4888  df-iota 6494  df-fv 6549  df-ov 7416  df-pnf 11279  df-mnf 11280  df-xr 11281  df-neg 11477  df-xneg 13136
This theorem is referenced by:  xrhmeo  24913  supminfxrrnmpt  45439  monoord2xrv  45451  liminfvalxr  45755  liminfpnfuz  45788  xlimpnfxnegmnf2  45830
  Copyright terms: Public domain W3C validator