MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegex Structured version   Visualization version   GIF version

Theorem xnegex 13144
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegex -𝑒𝐴 ∈ V

Proof of Theorem xnegex
StepHypRef Expression
1 df-xneg 13048 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 mnfxr 11207 . . . 4 -∞ ∈ ℝ*
32elexi 3467 . . 3 -∞ ∈ V
4 pnfex 11203 . . . 4 +∞ ∈ V
5 negex 11395 . . . 4 -𝐴 ∈ V
64, 5ifex 4535 . . 3 if(𝐴 = -∞, +∞, -𝐴) ∈ V
73, 6ifex 4535 . 2 if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V
81, 7eqeltri 2824 1 -𝑒𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  ifcif 4484  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183  -cneg 11382  -𝑒cxne 13045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-un 7691  ax-cnex 11100
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-uni 4868  df-iota 6452  df-fv 6507  df-ov 7372  df-pnf 11186  df-mnf 11187  df-xr 11188  df-neg 11384  df-xneg 13048
This theorem is referenced by:  xrhmeo  24820  supminfxrrnmpt  45440  monoord2xrv  45452  liminfvalxr  45754  liminfpnfuz  45787  xlimpnfxnegmnf2  45829
  Copyright terms: Public domain W3C validator