MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegex Structured version   Visualization version   GIF version

Theorem xnegex 13102
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegex -𝑒𝐴 ∈ V

Proof of Theorem xnegex
StepHypRef Expression
1 df-xneg 13006 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 mnfxr 11164 . . . 4 -∞ ∈ ℝ*
32elexi 3459 . . 3 -∞ ∈ V
4 pnfex 11160 . . . 4 +∞ ∈ V
5 negex 11353 . . . 4 -𝐴 ∈ V
64, 5ifex 4521 . . 3 if(𝐴 = -∞, +∞, -𝐴) ∈ V
73, 6ifex 4521 . 2 if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V
81, 7eqeltri 2827 1 -𝑒𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4470  +∞cpnf 11138  -∞cmnf 11139  *cxr 11140  -cneg 11340  -𝑒cxne 13003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-un 7663  ax-cnex 11057
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-uni 4855  df-iota 6432  df-fv 6484  df-ov 7344  df-pnf 11143  df-mnf 11144  df-xr 11145  df-neg 11342  df-xneg 13006
This theorem is referenced by:  xrhmeo  24866  supminfxrrnmpt  45509  monoord2xrv  45521  liminfvalxr  45821  liminfpnfuz  45854  xlimpnfxnegmnf2  45896
  Copyright terms: Public domain W3C validator