Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version |
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegex | ⊢ -𝑒𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12848 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | mnfxr 11032 | . . . 4 ⊢ -∞ ∈ ℝ* | |
3 | 2 | elexi 3451 | . . 3 ⊢ -∞ ∈ V |
4 | pnfex 11028 | . . . 4 ⊢ +∞ ∈ V | |
5 | negex 11219 | . . . 4 ⊢ -𝐴 ∈ V | |
6 | 4, 5 | ifex 4509 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
7 | 3, 6 | ifex 4509 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
8 | 1, 7 | eqeltri 2835 | 1 ⊢ -𝑒𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ifcif 4459 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 -cneg 11206 -𝑒cxne 12845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-fv 6441 df-ov 7278 df-pnf 11011 df-mnf 11012 df-xr 11013 df-neg 11208 df-xneg 12848 |
This theorem is referenced by: xrhmeo 24109 supminfxrrnmpt 43011 monoord2xrv 43024 liminfvalxr 43324 liminfpnfuz 43357 xlimpnfxnegmnf2 43399 |
Copyright terms: Public domain | W3C validator |