MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegex Structured version   Visualization version   GIF version

Theorem xnegex 13129
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegex -𝑒𝐴 ∈ V

Proof of Theorem xnegex
StepHypRef Expression
1 df-xneg 13033 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 mnfxr 11191 . . . 4 -∞ ∈ ℝ*
32elexi 3461 . . 3 -∞ ∈ V
4 pnfex 11187 . . . 4 +∞ ∈ V
5 negex 11380 . . . 4 -𝐴 ∈ V
64, 5ifex 4529 . . 3 if(𝐴 = -∞, +∞, -𝐴) ∈ V
73, 6ifex 4529 . 2 if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V
81, 7eqeltri 2824 1 -𝑒𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438  ifcif 4478  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167  -cneg 11367  -𝑒cxne 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-un 7675  ax-cnex 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-uni 4862  df-iota 6442  df-fv 6494  df-ov 7356  df-pnf 11170  df-mnf 11171  df-xr 11172  df-neg 11369  df-xneg 13033
This theorem is referenced by:  xrhmeo  24861  supminfxrrnmpt  45470  monoord2xrv  45482  liminfvalxr  45784  liminfpnfuz  45817  xlimpnfxnegmnf2  45859
  Copyright terms: Public domain W3C validator