Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version |
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegex | ⊢ -𝑒𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12590 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | mnfxr 10776 | . . . 4 ⊢ -∞ ∈ ℝ* | |
3 | 2 | elexi 3417 | . . 3 ⊢ -∞ ∈ V |
4 | pnfex 10772 | . . . 4 ⊢ +∞ ∈ V | |
5 | negex 10962 | . . . 4 ⊢ -𝐴 ∈ V | |
6 | 4, 5 | ifex 4464 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
7 | 3, 6 | ifex 4464 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
8 | 1, 7 | eqeltri 2829 | 1 ⊢ -𝑒𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 Vcvv 3398 ifcif 4414 +∞cpnf 10750 -∞cmnf 10751 ℝ*cxr 10752 -cneg 10949 -𝑒cxne 12587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-un 7479 ax-cnex 10671 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-uni 4797 df-iota 6297 df-fv 6347 df-ov 7173 df-pnf 10755 df-mnf 10756 df-xr 10757 df-neg 10951 df-xneg 12590 |
This theorem is referenced by: xrhmeo 23698 supminfxrrnmpt 42551 monoord2xrv 42564 liminfvalxr 42866 liminfpnfuz 42899 xlimpnfxnegmnf2 42941 |
Copyright terms: Public domain | W3C validator |