| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version | ||
| Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegex | ⊢ -𝑒𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13136 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | mnfxr 11300 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | elexi 3486 | . . 3 ⊢ -∞ ∈ V |
| 4 | pnfex 11296 | . . . 4 ⊢ +∞ ∈ V | |
| 5 | negex 11488 | . . . 4 ⊢ -𝐴 ∈ V | |
| 6 | 4, 5 | ifex 4556 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
| 7 | 3, 6 | ifex 4556 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
| 8 | 1, 7 | eqeltri 2829 | 1 ⊢ -𝑒𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3463 ifcif 4505 +∞cpnf 11274 -∞cmnf 11275 ℝ*cxr 11276 -cneg 11475 -𝑒cxne 13133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-un 7737 ax-cnex 11193 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4888 df-iota 6494 df-fv 6549 df-ov 7416 df-pnf 11279 df-mnf 11280 df-xr 11281 df-neg 11477 df-xneg 13136 |
| This theorem is referenced by: xrhmeo 24913 supminfxrrnmpt 45439 monoord2xrv 45451 liminfvalxr 45755 liminfpnfuz 45788 xlimpnfxnegmnf2 45830 |
| Copyright terms: Public domain | W3C validator |