| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version | ||
| Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegex | ⊢ -𝑒𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13017 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | mnfxr 11180 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | elexi 3460 | . . 3 ⊢ -∞ ∈ V |
| 4 | pnfex 11176 | . . . 4 ⊢ +∞ ∈ V | |
| 5 | negex 11369 | . . . 4 ⊢ -𝐴 ∈ V | |
| 6 | 4, 5 | ifex 4527 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
| 7 | 3, 6 | ifex 4527 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
| 8 | 1, 7 | eqeltri 2829 | 1 ⊢ -𝑒𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ifcif 4476 +∞cpnf 11154 -∞cmnf 11155 ℝ*cxr 11156 -cneg 11356 -𝑒cxne 13014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-un 7677 ax-cnex 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4861 df-iota 6445 df-fv 6497 df-ov 7358 df-pnf 11159 df-mnf 11160 df-xr 11161 df-neg 11358 df-xneg 13017 |
| This theorem is referenced by: xrhmeo 24891 supminfxrrnmpt 45631 monoord2xrv 45643 liminfvalxr 45943 liminfpnfuz 45976 xlimpnfxnegmnf2 46018 |
| Copyright terms: Public domain | W3C validator |