![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version |
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegex | ⊢ -𝑒𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 13161 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | mnfxr 11325 | . . . 4 ⊢ -∞ ∈ ℝ* | |
3 | 2 | elexi 3504 | . . 3 ⊢ -∞ ∈ V |
4 | pnfex 11321 | . . . 4 ⊢ +∞ ∈ V | |
5 | negex 11513 | . . . 4 ⊢ -𝐴 ∈ V | |
6 | 4, 5 | ifex 4584 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
7 | 3, 6 | ifex 4584 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
8 | 1, 7 | eqeltri 2837 | 1 ⊢ -𝑒𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3481 ifcif 4534 +∞cpnf 11299 -∞cmnf 11300 ℝ*cxr 11301 -cneg 11500 -𝑒cxne 13158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-un 7761 ax-cnex 11218 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-uni 4916 df-iota 6522 df-fv 6577 df-ov 7441 df-pnf 11304 df-mnf 11305 df-xr 11306 df-neg 11502 df-xneg 13161 |
This theorem is referenced by: xrhmeo 25002 supminfxrrnmpt 45450 monoord2xrv 45463 liminfvalxr 45767 liminfpnfuz 45800 xlimpnfxnegmnf2 45842 |
Copyright terms: Public domain | W3C validator |