Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version |
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegex | ⊢ -𝑒𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 12777 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
2 | mnfxr 10963 | . . . 4 ⊢ -∞ ∈ ℝ* | |
3 | 2 | elexi 3441 | . . 3 ⊢ -∞ ∈ V |
4 | pnfex 10959 | . . . 4 ⊢ +∞ ∈ V | |
5 | negex 11149 | . . . 4 ⊢ -𝐴 ∈ V | |
6 | 4, 5 | ifex 4506 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
7 | 3, 6 | ifex 4506 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
8 | 1, 7 | eqeltri 2835 | 1 ⊢ -𝑒𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 -cneg 11136 -𝑒cxne 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-fv 6426 df-ov 7258 df-pnf 10942 df-mnf 10943 df-xr 10944 df-neg 11138 df-xneg 12777 |
This theorem is referenced by: xrhmeo 24015 supminfxrrnmpt 42901 monoord2xrv 42914 liminfvalxr 43214 liminfpnfuz 43247 xlimpnfxnegmnf2 43289 |
Copyright terms: Public domain | W3C validator |