| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnegex | Structured version Visualization version GIF version | ||
| Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xnegex | ⊢ -𝑒𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 13006 | . 2 ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) | |
| 2 | mnfxr 11164 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 3 | 2 | elexi 3459 | . . 3 ⊢ -∞ ∈ V |
| 4 | pnfex 11160 | . . . 4 ⊢ +∞ ∈ V | |
| 5 | negex 11353 | . . . 4 ⊢ -𝐴 ∈ V | |
| 6 | 4, 5 | ifex 4521 | . . 3 ⊢ if(𝐴 = -∞, +∞, -𝐴) ∈ V |
| 7 | 3, 6 | ifex 4521 | . 2 ⊢ if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V |
| 8 | 1, 7 | eqeltri 2827 | 1 ⊢ -𝑒𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4470 +∞cpnf 11138 -∞cmnf 11139 ℝ*cxr 11140 -cneg 11340 -𝑒cxne 13003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-un 7663 ax-cnex 11057 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-uni 4855 df-iota 6432 df-fv 6484 df-ov 7344 df-pnf 11143 df-mnf 11144 df-xr 11145 df-neg 11342 df-xneg 13006 |
| This theorem is referenced by: xrhmeo 24866 supminfxrrnmpt 45509 monoord2xrv 45521 liminfvalxr 45821 liminfpnfuz 45854 xlimpnfxnegmnf2 45896 |
| Copyright terms: Public domain | W3C validator |