MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegex Structured version   Visualization version   GIF version

Theorem xnegex 13114
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegex -𝑒𝐴 ∈ V

Proof of Theorem xnegex
StepHypRef Expression
1 df-xneg 13017 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 mnfxr 11180 . . . 4 -∞ ∈ ℝ*
32elexi 3460 . . 3 -∞ ∈ V
4 pnfex 11176 . . . 4 +∞ ∈ V
5 negex 11369 . . . 4 -𝐴 ∈ V
64, 5ifex 4527 . . 3 if(𝐴 = -∞, +∞, -𝐴) ∈ V
73, 6ifex 4527 . 2 if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V
81, 7eqeltri 2829 1 -𝑒𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4476  +∞cpnf 11154  -∞cmnf 11155  *cxr 11156  -cneg 11356  -𝑒cxne 13014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-un 7677  ax-cnex 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-uni 4861  df-iota 6445  df-fv 6497  df-ov 7358  df-pnf 11159  df-mnf 11160  df-xr 11161  df-neg 11358  df-xneg 13017
This theorem is referenced by:  xrhmeo  24891  supminfxrrnmpt  45631  monoord2xrv  45643  liminfvalxr  45943  liminfpnfuz  45976  xlimpnfxnegmnf2  46018
  Copyright terms: Public domain W3C validator