MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnegex Structured version   Visualization version   GIF version

Theorem xnegex 12684
Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegex -𝑒𝐴 ∈ V

Proof of Theorem xnegex
StepHypRef Expression
1 df-xneg 12590 . 2 -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
2 mnfxr 10776 . . . 4 -∞ ∈ ℝ*
32elexi 3417 . . 3 -∞ ∈ V
4 pnfex 10772 . . . 4 +∞ ∈ V
5 negex 10962 . . . 4 -𝐴 ∈ V
64, 5ifex 4464 . . 3 if(𝐴 = -∞, +∞, -𝐴) ∈ V
73, 6ifex 4464 . 2 if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) ∈ V
81, 7eqeltri 2829 1 -𝑒𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2114  Vcvv 3398  ifcif 4414  +∞cpnf 10750  -∞cmnf 10751  *cxr 10752  -cneg 10949  -𝑒cxne 12587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-un 7479  ax-cnex 10671
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-uni 4797  df-iota 6297  df-fv 6347  df-ov 7173  df-pnf 10755  df-mnf 10756  df-xr 10757  df-neg 10951  df-xneg 12590
This theorem is referenced by:  xrhmeo  23698  supminfxrrnmpt  42551  monoord2xrv  42564  liminfvalxr  42866  liminfpnfuz  42899  xlimpnfxnegmnf2  42941
  Copyright terms: Public domain W3C validator