MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21280
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21282, cnfldadd 21285, cnfldmul 21287, cnfldcj 21288, cnfldtset 21289, cnfldle 21290, cnfldds 21291, and cnfldbas 21283. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21279 . 2 class fld
2 cnx 17122 . . . . . . 7 class ndx
3 cbs 17138 . . . . . . 7 class Base
42, 3cfv 6486 . . . . . 6 class (Base‘ndx)
5 cc 11026 . . . . . 6 class
64, 5cop 4585 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17179 . . . . . . 7 class +g
82, 7cfv 6486 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1539 . . . . . . . 8 class 𝑥
1210cv 1539 . . . . . . . 8 class 𝑦
13 caddc 11031 . . . . . . . 8 class +
1411, 12, 13co 7353 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 7355 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 4585 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 17180 . . . . . . 7 class .r
182, 17cfv 6486 . . . . . 6 class (.r‘ndx)
19 cmul 11033 . . . . . . . 8 class ·
2011, 12, 19co 7353 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 7355 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 4585 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 4583 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 17181 . . . . . . 7 class *𝑟
252, 24cfv 6486 . . . . . 6 class (*𝑟‘ndx)
26 ccj 15021 . . . . . 6 class
2725, 26cop 4585 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 4579 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3903 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 17185 . . . . . . 7 class TopSet
312, 30cfv 6486 . . . . . 6 class (TopSet‘ndx)
32 cabs 15159 . . . . . . . 8 class abs
33 cmin 11365 . . . . . . . 8 class
3432, 33ccom 5627 . . . . . . 7 class (abs ∘ − )
35 cmopn 21269 . . . . . . 7 class MetOpen
3634, 35cfv 6486 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 4585 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 17186 . . . . . . 7 class le
392, 38cfv 6486 . . . . . 6 class (le‘ndx)
40 cle 11169 . . . . . 6 class
4139, 40cop 4585 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 17188 . . . . . . 7 class dist
432, 42cfv 6486 . . . . . 6 class (dist‘ndx)
4443, 34cop 4585 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 4583 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 17189 . . . . . . 7 class UnifSet
472, 46cfv 6486 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 21270 . . . . . . 7 class metUnif
4934, 48cfv 6486 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 4585 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 4579 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3903 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3903 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1540 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21281  cnfldex  21282  cnfldbas  21283  mpocnfldadd  21284  mpocnfldmul  21286  cnfldcj  21288  cnfldtset  21289  cnfldle  21290  cnfldds  21291  cnfldunif  21292  cnfldfun  21293  cnfldfunALT  21294  dfcnfldOLD  21295  cffldtocusgr  29410
  Copyright terms: Public domain W3C validator