Detailed syntax breakdown of Definition df-cnfld
Step | Hyp | Ref
| Expression |
1 | | ccnfld 20510 |
. 2
class
ℂfld |
2 | | cnx 16822 |
. . . . . . 7
class
ndx |
3 | | cbs 16840 |
. . . . . . 7
class
Base |
4 | 2, 3 | cfv 6418 |
. . . . . 6
class
(Base‘ndx) |
5 | | cc 10800 |
. . . . . 6
class
ℂ |
6 | 4, 5 | cop 4564 |
. . . . 5
class
〈(Base‘ndx), ℂ〉 |
7 | | cplusg 16888 |
. . . . . . 7
class
+g |
8 | 2, 7 | cfv 6418 |
. . . . . 6
class
(+g‘ndx) |
9 | | caddc 10805 |
. . . . . 6
class
+ |
10 | 8, 9 | cop 4564 |
. . . . 5
class
〈(+g‘ndx), + 〉 |
11 | | cmulr 16889 |
. . . . . . 7
class
.r |
12 | 2, 11 | cfv 6418 |
. . . . . 6
class
(.r‘ndx) |
13 | | cmul 10807 |
. . . . . 6
class
· |
14 | 12, 13 | cop 4564 |
. . . . 5
class
〈(.r‘ndx), · 〉 |
15 | 6, 10, 14 | ctp 4562 |
. . . 4
class
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
+ 〉, 〈(.r‘ndx), · 〉} |
16 | | cstv 16890 |
. . . . . . 7
class
*𝑟 |
17 | 2, 16 | cfv 6418 |
. . . . . 6
class
(*𝑟‘ndx) |
18 | | ccj 14735 |
. . . . . 6
class
∗ |
19 | 17, 18 | cop 4564 |
. . . . 5
class
〈(*𝑟‘ndx), ∗〉 |
20 | 19 | csn 4558 |
. . . 4
class
{〈(*𝑟‘ndx),
∗〉} |
21 | 15, 20 | cun 3881 |
. . 3
class
({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) |
22 | | cts 16894 |
. . . . . . 7
class
TopSet |
23 | 2, 22 | cfv 6418 |
. . . . . 6
class
(TopSet‘ndx) |
24 | | cabs 14873 |
. . . . . . . 8
class
abs |
25 | | cmin 11135 |
. . . . . . . 8
class
− |
26 | 24, 25 | ccom 5584 |
. . . . . . 7
class (abs
∘ − ) |
27 | | cmopn 20500 |
. . . . . . 7
class
MetOpen |
28 | 26, 27 | cfv 6418 |
. . . . . 6
class
(MetOpen‘(abs ∘ − )) |
29 | 23, 28 | cop 4564 |
. . . . 5
class
〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉 |
30 | | cple 16895 |
. . . . . . 7
class
le |
31 | 2, 30 | cfv 6418 |
. . . . . 6
class
(le‘ndx) |
32 | | cle 10941 |
. . . . . 6
class
≤ |
33 | 31, 32 | cop 4564 |
. . . . 5
class
〈(le‘ndx), ≤ 〉 |
34 | | cds 16897 |
. . . . . . 7
class
dist |
35 | 2, 34 | cfv 6418 |
. . . . . 6
class
(dist‘ndx) |
36 | 35, 26 | cop 4564 |
. . . . 5
class
〈(dist‘ndx), (abs ∘ − )〉 |
37 | 29, 33, 36 | ctp 4562 |
. . . 4
class
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} |
38 | | cunif 16898 |
. . . . . . 7
class
UnifSet |
39 | 2, 38 | cfv 6418 |
. . . . . 6
class
(UnifSet‘ndx) |
40 | | cmetu 20501 |
. . . . . . 7
class
metUnif |
41 | 26, 40 | cfv 6418 |
. . . . . 6
class
(metUnif‘(abs ∘ − )) |
42 | 39, 41 | cop 4564 |
. . . . 5
class
〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉 |
43 | 42 | csn 4558 |
. . . 4
class
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉} |
44 | 37, 43 | cun 3881 |
. . 3
class
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs
∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) |
45 | 21, 44 | cun 3881 |
. 2
class
(({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |
46 | 1, 45 | wceq 1539 |
1
wff
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), + 〉, 〈(.r‘ndx),
· 〉} ∪ {〈(*𝑟‘ndx),
∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘
− ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx),
(abs ∘ − )〉} ∪ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |