MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21265
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21267, cnfldadd 21270, cnfldmul 21272, cnfldcj 21273, cnfldtset 21274, cnfldle 21275, cnfldds 21276, and cnfldbas 21268. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21264 . 2 class fld
2 cnx 17163 . . . . . . 7 class ndx
3 cbs 17179 . . . . . . 7 class Base
42, 3cfv 6511 . . . . . 6 class (Base‘ndx)
5 cc 11066 . . . . . 6 class
64, 5cop 4595 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17220 . . . . . . 7 class +g
82, 7cfv 6511 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1539 . . . . . . . 8 class 𝑥
1210cv 1539 . . . . . . . 8 class 𝑦
13 caddc 11071 . . . . . . . 8 class +
1411, 12, 13co 7387 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 7389 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 4595 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 17221 . . . . . . 7 class .r
182, 17cfv 6511 . . . . . 6 class (.r‘ndx)
19 cmul 11073 . . . . . . . 8 class ·
2011, 12, 19co 7387 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 7389 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 4595 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 4593 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 17222 . . . . . . 7 class *𝑟
252, 24cfv 6511 . . . . . 6 class (*𝑟‘ndx)
26 ccj 15062 . . . . . 6 class
2725, 26cop 4595 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 4589 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3912 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 17226 . . . . . . 7 class TopSet
312, 30cfv 6511 . . . . . 6 class (TopSet‘ndx)
32 cabs 15200 . . . . . . . 8 class abs
33 cmin 11405 . . . . . . . 8 class
3432, 33ccom 5642 . . . . . . 7 class (abs ∘ − )
35 cmopn 21254 . . . . . . 7 class MetOpen
3634, 35cfv 6511 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 4595 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 17227 . . . . . . 7 class le
392, 38cfv 6511 . . . . . 6 class (le‘ndx)
40 cle 11209 . . . . . 6 class
4139, 40cop 4595 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 17229 . . . . . . 7 class dist
432, 42cfv 6511 . . . . . 6 class (dist‘ndx)
4443, 34cop 4595 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 4593 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 17230 . . . . . . 7 class UnifSet
472, 46cfv 6511 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 21255 . . . . . . 7 class metUnif
4934, 48cfv 6511 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 4595 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 4589 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3912 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3912 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1540 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21266  cnfldex  21267  cnfldbas  21268  mpocnfldadd  21269  mpocnfldmul  21271  cnfldcj  21273  cnfldtset  21274  cnfldle  21275  cnfldds  21276  cnfldunif  21277  cnfldfun  21278  cnfldfunALT  21279  dfcnfldOLD  21280  cffldtocusgr  29374
  Copyright terms: Public domain W3C validator