MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 20228
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 20230, cnfldadd 20232, cnfldmul 20233, cnfldcj 20234, cnfldtset 20235, cnfldle 20236, cnfldds 20237, and cnfldbas 20231. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 20227 . 2 class fld
2 cnx 16309 . . . . . . 7 class ndx
3 cbs 16312 . . . . . . 7 class Base
42, 3cfv 6225 . . . . . 6 class (Base‘ndx)
5 cc 10381 . . . . . 6 class
64, 5cop 4478 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 16394 . . . . . . 7 class +g
82, 7cfv 6225 . . . . . 6 class (+g‘ndx)
9 caddc 10386 . . . . . 6 class +
108, 9cop 4478 . . . . 5 class ⟨(+g‘ndx), + ⟩
11 cmulr 16395 . . . . . . 7 class .r
122, 11cfv 6225 . . . . . 6 class (.r‘ndx)
13 cmul 10388 . . . . . 6 class ·
1412, 13cop 4478 . . . . 5 class ⟨(.r‘ndx), · ⟩
156, 10, 14ctp 4476 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
16 cstv 16396 . . . . . . 7 class *𝑟
172, 16cfv 6225 . . . . . 6 class (*𝑟‘ndx)
18 ccj 14289 . . . . . 6 class
1917, 18cop 4478 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2019csn 4472 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2115, 20cun 3857 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
22 cts 16400 . . . . . . 7 class TopSet
232, 22cfv 6225 . . . . . 6 class (TopSet‘ndx)
24 cabs 14427 . . . . . . . 8 class abs
25 cmin 10717 . . . . . . . 8 class
2624, 25ccom 5447 . . . . . . 7 class (abs ∘ − )
27 cmopn 20217 . . . . . . 7 class MetOpen
2826, 27cfv 6225 . . . . . 6 class (MetOpen‘(abs ∘ − ))
2923, 28cop 4478 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
30 cple 16401 . . . . . . 7 class le
312, 30cfv 6225 . . . . . 6 class (le‘ndx)
32 cle 10522 . . . . . 6 class
3331, 32cop 4478 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
34 cds 16403 . . . . . . 7 class dist
352, 34cfv 6225 . . . . . 6 class (dist‘ndx)
3635, 26cop 4478 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
3729, 33, 36ctp 4476 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
38 cunif 16404 . . . . . . 7 class UnifSet
392, 38cfv 6225 . . . . . 6 class (UnifSet‘ndx)
40 cmetu 20218 . . . . . . 7 class metUnif
4126, 40cfv 6225 . . . . . 6 class (metUnif‘(abs ∘ − ))
4239, 41cop 4478 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
4342csn 4472 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
4437, 43cun 3857 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
4521, 44cun 3857 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
461, 45wceq 1522 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  20229  cnfldbas  20231  cnfldadd  20232  cnfldmul  20233  cnfldcj  20234  cnfldtset  20235  cnfldle  20236  cnfldds  20237  cnfldunif  20238  cnfldfun  20239  cnfldfunALT  20240  cffldtocusgr  26912
  Copyright terms: Public domain W3C validator