MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 20945
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 20947, cnfldadd 20949, cnfldmul 20950, cnfldcj 20951, cnfldtset 20952, cnfldle 20953, cnfldds 20954, and cnfldbas 20948. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 20944 . 2 class fld
2 cnx 17126 . . . . . . 7 class ndx
3 cbs 17144 . . . . . . 7 class Base
42, 3cfv 6544 . . . . . 6 class (Base‘ndx)
5 cc 11108 . . . . . 6 class
64, 5cop 4635 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17197 . . . . . . 7 class +g
82, 7cfv 6544 . . . . . 6 class (+g‘ndx)
9 caddc 11113 . . . . . 6 class +
108, 9cop 4635 . . . . 5 class ⟨(+g‘ndx), + ⟩
11 cmulr 17198 . . . . . . 7 class .r
122, 11cfv 6544 . . . . . 6 class (.r‘ndx)
13 cmul 11115 . . . . . 6 class ·
1412, 13cop 4635 . . . . 5 class ⟨(.r‘ndx), · ⟩
156, 10, 14ctp 4633 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
16 cstv 17199 . . . . . . 7 class *𝑟
172, 16cfv 6544 . . . . . 6 class (*𝑟‘ndx)
18 ccj 15043 . . . . . 6 class
1917, 18cop 4635 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2019csn 4629 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2115, 20cun 3947 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
22 cts 17203 . . . . . . 7 class TopSet
232, 22cfv 6544 . . . . . 6 class (TopSet‘ndx)
24 cabs 15181 . . . . . . . 8 class abs
25 cmin 11444 . . . . . . . 8 class
2624, 25ccom 5681 . . . . . . 7 class (abs ∘ − )
27 cmopn 20934 . . . . . . 7 class MetOpen
2826, 27cfv 6544 . . . . . 6 class (MetOpen‘(abs ∘ − ))
2923, 28cop 4635 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
30 cple 17204 . . . . . . 7 class le
312, 30cfv 6544 . . . . . 6 class (le‘ndx)
32 cle 11249 . . . . . 6 class
3331, 32cop 4635 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
34 cds 17206 . . . . . . 7 class dist
352, 34cfv 6544 . . . . . 6 class (dist‘ndx)
3635, 26cop 4635 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
3729, 33, 36ctp 4633 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
38 cunif 17207 . . . . . . 7 class UnifSet
392, 38cfv 6544 . . . . . 6 class (UnifSet‘ndx)
40 cmetu 20935 . . . . . . 7 class metUnif
4126, 40cfv 6544 . . . . . 6 class (metUnif‘(abs ∘ − ))
4239, 41cop 4635 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
4342csn 4629 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
4437, 43cun 3947 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
4521, 44cun 3947 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
461, 45wceq 1542 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  20946  cnfldbas  20948  cnfldadd  20949  cnfldmul  20950  cnfldcj  20951  cnfldtset  20952  cnfldle  20953  cnfldds  20954  cnfldunif  20955  cnfldfun  20956  cnfldfunALT  20957  cnfldfunALTOLD  20958  cffldtocusgr  28704  gg-cnfldex  35180
  Copyright terms: Public domain W3C validator