MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21388
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21390, cnfldadd 21393, cnfldmul 21395, cnfldcj 21396, cnfldtset 21397, cnfldle 21398, cnfldds 21399, and cnfldbas 21391. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21387 . 2 class fld
2 cnx 17240 . . . . . . 7 class ndx
3 cbs 17258 . . . . . . 7 class Base
42, 3cfv 6573 . . . . . 6 class (Base‘ndx)
5 cc 11182 . . . . . 6 class
64, 5cop 4654 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17311 . . . . . . 7 class +g
82, 7cfv 6573 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1536 . . . . . . . 8 class 𝑥
1210cv 1536 . . . . . . . 8 class 𝑦
13 caddc 11187 . . . . . . . 8 class +
1411, 12, 13co 7448 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 7450 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 4654 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 17312 . . . . . . 7 class .r
182, 17cfv 6573 . . . . . 6 class (.r‘ndx)
19 cmul 11189 . . . . . . . 8 class ·
2011, 12, 19co 7448 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 7450 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 4654 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 4652 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 17313 . . . . . . 7 class *𝑟
252, 24cfv 6573 . . . . . 6 class (*𝑟‘ndx)
26 ccj 15145 . . . . . 6 class
2725, 26cop 4654 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 4648 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3974 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 17317 . . . . . . 7 class TopSet
312, 30cfv 6573 . . . . . 6 class (TopSet‘ndx)
32 cabs 15283 . . . . . . . 8 class abs
33 cmin 11520 . . . . . . . 8 class
3432, 33ccom 5704 . . . . . . 7 class (abs ∘ − )
35 cmopn 21377 . . . . . . 7 class MetOpen
3634, 35cfv 6573 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 4654 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 17318 . . . . . . 7 class le
392, 38cfv 6573 . . . . . 6 class (le‘ndx)
40 cle 11325 . . . . . 6 class
4139, 40cop 4654 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 17320 . . . . . . 7 class dist
432, 42cfv 6573 . . . . . 6 class (dist‘ndx)
4443, 34cop 4654 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 4652 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 17321 . . . . . . 7 class UnifSet
472, 46cfv 6573 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 21378 . . . . . . 7 class metUnif
4934, 48cfv 6573 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 4654 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 4648 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3974 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3974 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1537 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21389  cnfldex  21390  cnfldbas  21391  mpocnfldadd  21392  mpocnfldmul  21394  cnfldcj  21396  cnfldtset  21397  cnfldle  21398  cnfldds  21399  cnfldunif  21400  cnfldfun  21401  cnfldfunALT  21402  dfcnfldOLD  21403  cffldtocusgr  29482
  Copyright terms: Public domain W3C validator