Detailed syntax breakdown of Definition df-cnfld
Step | Hyp | Ref
| Expression |
1 | | ccnfld 21387 |
. 2
class
ℂfld |
2 | | cnx 17240 |
. . . . . . 7
class
ndx |
3 | | cbs 17258 |
. . . . . . 7
class
Base |
4 | 2, 3 | cfv 6573 |
. . . . . 6
class
(Base‘ndx) |
5 | | cc 11182 |
. . . . . 6
class
ℂ |
6 | 4, 5 | cop 4654 |
. . . . 5
class
〈(Base‘ndx), ℂ〉 |
7 | | cplusg 17311 |
. . . . . . 7
class
+g |
8 | 2, 7 | cfv 6573 |
. . . . . 6
class
(+g‘ndx) |
9 | | vx |
. . . . . . 7
setvar 𝑥 |
10 | | vy |
. . . . . . 7
setvar 𝑦 |
11 | 9 | cv 1536 |
. . . . . . . 8
class 𝑥 |
12 | 10 | cv 1536 |
. . . . . . . 8
class 𝑦 |
13 | | caddc 11187 |
. . . . . . . 8
class
+ |
14 | 11, 12, 13 | co 7448 |
. . . . . . 7
class (𝑥 + 𝑦) |
15 | 9, 10, 5, 5, 14 | cmpo 7450 |
. . . . . 6
class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) |
16 | 8, 15 | cop 4654 |
. . . . 5
class
〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉 |
17 | | cmulr 17312 |
. . . . . . 7
class
.r |
18 | 2, 17 | cfv 6573 |
. . . . . 6
class
(.r‘ndx) |
19 | | cmul 11189 |
. . . . . . . 8
class
· |
20 | 11, 12, 19 | co 7448 |
. . . . . . 7
class (𝑥 · 𝑦) |
21 | 9, 10, 5, 5, 20 | cmpo 7450 |
. . . . . 6
class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) |
22 | 18, 21 | cop 4654 |
. . . . 5
class
〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉 |
23 | 6, 16, 22 | ctp 4652 |
. . . 4
class
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} |
24 | | cstv 17313 |
. . . . . . 7
class
*𝑟 |
25 | 2, 24 | cfv 6573 |
. . . . . 6
class
(*𝑟‘ndx) |
26 | | ccj 15145 |
. . . . . 6
class
∗ |
27 | 25, 26 | cop 4654 |
. . . . 5
class
〈(*𝑟‘ndx), ∗〉 |
28 | 27 | csn 4648 |
. . . 4
class
{〈(*𝑟‘ndx),
∗〉} |
29 | 23, 28 | cun 3974 |
. . 3
class
({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) |
30 | | cts 17317 |
. . . . . . 7
class
TopSet |
31 | 2, 30 | cfv 6573 |
. . . . . 6
class
(TopSet‘ndx) |
32 | | cabs 15283 |
. . . . . . . 8
class
abs |
33 | | cmin 11520 |
. . . . . . . 8
class
− |
34 | 32, 33 | ccom 5704 |
. . . . . . 7
class (abs
∘ − ) |
35 | | cmopn 21377 |
. . . . . . 7
class
MetOpen |
36 | 34, 35 | cfv 6573 |
. . . . . 6
class
(MetOpen‘(abs ∘ − )) |
37 | 31, 36 | cop 4654 |
. . . . 5
class
〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉 |
38 | | cple 17318 |
. . . . . . 7
class
le |
39 | 2, 38 | cfv 6573 |
. . . . . 6
class
(le‘ndx) |
40 | | cle 11325 |
. . . . . 6
class
≤ |
41 | 39, 40 | cop 4654 |
. . . . 5
class
〈(le‘ndx), ≤ 〉 |
42 | | cds 17320 |
. . . . . . 7
class
dist |
43 | 2, 42 | cfv 6573 |
. . . . . 6
class
(dist‘ndx) |
44 | 43, 34 | cop 4654 |
. . . . 5
class
〈(dist‘ndx), (abs ∘ − )〉 |
45 | 37, 41, 44 | ctp 4652 |
. . . 4
class
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} |
46 | | cunif 17321 |
. . . . . . 7
class
UnifSet |
47 | 2, 46 | cfv 6573 |
. . . . . 6
class
(UnifSet‘ndx) |
48 | | cmetu 21378 |
. . . . . . 7
class
metUnif |
49 | 34, 48 | cfv 6573 |
. . . . . 6
class
(metUnif‘(abs ∘ − )) |
50 | 47, 49 | cop 4654 |
. . . . 5
class
〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉 |
51 | 50 | csn 4648 |
. . . 4
class
{〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉} |
52 | 45, 51 | cun 3974 |
. . 3
class
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs
∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) |
53 | 29, 52 | cun 3974 |
. 2
class
(({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
54 | 1, 53 | wceq 1537 |
1
wff
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |