MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 20607
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 20609, cnfldadd 20611, cnfldmul 20612, cnfldcj 20613, cnfldtset 20614, cnfldle 20615, cnfldds 20616, and cnfldbas 20610. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 20606 . 2 class fld
2 cnx 16903 . . . . . . 7 class ndx
3 cbs 16921 . . . . . . 7 class Base
42, 3cfv 6437 . . . . . 6 class (Base‘ndx)
5 cc 10878 . . . . . 6 class
64, 5cop 4568 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 16971 . . . . . . 7 class +g
82, 7cfv 6437 . . . . . 6 class (+g‘ndx)
9 caddc 10883 . . . . . 6 class +
108, 9cop 4568 . . . . 5 class ⟨(+g‘ndx), + ⟩
11 cmulr 16972 . . . . . . 7 class .r
122, 11cfv 6437 . . . . . 6 class (.r‘ndx)
13 cmul 10885 . . . . . 6 class ·
1412, 13cop 4568 . . . . 5 class ⟨(.r‘ndx), · ⟩
156, 10, 14ctp 4566 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
16 cstv 16973 . . . . . . 7 class *𝑟
172, 16cfv 6437 . . . . . 6 class (*𝑟‘ndx)
18 ccj 14816 . . . . . 6 class
1917, 18cop 4568 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2019csn 4562 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2115, 20cun 3886 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
22 cts 16977 . . . . . . 7 class TopSet
232, 22cfv 6437 . . . . . 6 class (TopSet‘ndx)
24 cabs 14954 . . . . . . . 8 class abs
25 cmin 11214 . . . . . . . 8 class
2624, 25ccom 5594 . . . . . . 7 class (abs ∘ − )
27 cmopn 20596 . . . . . . 7 class MetOpen
2826, 27cfv 6437 . . . . . 6 class (MetOpen‘(abs ∘ − ))
2923, 28cop 4568 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
30 cple 16978 . . . . . . 7 class le
312, 30cfv 6437 . . . . . 6 class (le‘ndx)
32 cle 11019 . . . . . 6 class
3331, 32cop 4568 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
34 cds 16980 . . . . . . 7 class dist
352, 34cfv 6437 . . . . . 6 class (dist‘ndx)
3635, 26cop 4568 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
3729, 33, 36ctp 4566 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
38 cunif 16981 . . . . . . 7 class UnifSet
392, 38cfv 6437 . . . . . 6 class (UnifSet‘ndx)
40 cmetu 20597 . . . . . . 7 class metUnif
4126, 40cfv 6437 . . . . . 6 class (metUnif‘(abs ∘ − ))
4239, 41cop 4568 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
4342csn 4562 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
4437, 43cun 3886 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
4521, 44cun 3886 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
461, 45wceq 1539 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  20608  cnfldbas  20610  cnfldadd  20611  cnfldmul  20612  cnfldcj  20613  cnfldtset  20614  cnfldle  20615  cnfldds  20616  cnfldunif  20617  cnfldfun  20618  cnfldfunALT  20619  cnfldfunALTOLD  20620  cffldtocusgr  27823
  Copyright terms: Public domain W3C validator