MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21272
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21274, cnfldadd 21277, cnfldmul 21279, cnfldcj 21280, cnfldtset 21281, cnfldle 21282, cnfldds 21283, and cnfldbas 21275. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21271 . 2 class fld
2 cnx 17170 . . . . . . 7 class ndx
3 cbs 17186 . . . . . . 7 class Base
42, 3cfv 6514 . . . . . 6 class (Base‘ndx)
5 cc 11073 . . . . . 6 class
64, 5cop 4598 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17227 . . . . . . 7 class +g
82, 7cfv 6514 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1539 . . . . . . . 8 class 𝑥
1210cv 1539 . . . . . . . 8 class 𝑦
13 caddc 11078 . . . . . . . 8 class +
1411, 12, 13co 7390 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 7392 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 4598 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 17228 . . . . . . 7 class .r
182, 17cfv 6514 . . . . . 6 class (.r‘ndx)
19 cmul 11080 . . . . . . . 8 class ·
2011, 12, 19co 7390 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 7392 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 4598 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 4596 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 17229 . . . . . . 7 class *𝑟
252, 24cfv 6514 . . . . . 6 class (*𝑟‘ndx)
26 ccj 15069 . . . . . 6 class
2725, 26cop 4598 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 4592 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3915 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 17233 . . . . . . 7 class TopSet
312, 30cfv 6514 . . . . . 6 class (TopSet‘ndx)
32 cabs 15207 . . . . . . . 8 class abs
33 cmin 11412 . . . . . . . 8 class
3432, 33ccom 5645 . . . . . . 7 class (abs ∘ − )
35 cmopn 21261 . . . . . . 7 class MetOpen
3634, 35cfv 6514 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 4598 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 17234 . . . . . . 7 class le
392, 38cfv 6514 . . . . . 6 class (le‘ndx)
40 cle 11216 . . . . . 6 class
4139, 40cop 4598 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 17236 . . . . . . 7 class dist
432, 42cfv 6514 . . . . . 6 class (dist‘ndx)
4443, 34cop 4598 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 4596 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 17237 . . . . . . 7 class UnifSet
472, 46cfv 6514 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 21262 . . . . . . 7 class metUnif
4934, 48cfv 6514 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 4598 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 4592 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3915 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3915 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1540 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21273  cnfldex  21274  cnfldbas  21275  mpocnfldadd  21276  mpocnfldmul  21278  cnfldcj  21280  cnfldtset  21281  cnfldle  21282  cnfldds  21283  cnfldunif  21284  cnfldfun  21285  cnfldfunALT  21286  dfcnfldOLD  21287  cffldtocusgr  29381
  Copyright terms: Public domain W3C validator