MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21301
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21303, cnfldadd 21306, cnfldmul 21308, cnfldcj 21309, cnfldtset 21310, cnfldle 21311, cnfldds 21312, and cnfldbas 21304. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21300 . 2 class fld
2 cnx 17111 . . . . . . 7 class ndx
3 cbs 17127 . . . . . . 7 class Base
42, 3cfv 6489 . . . . . 6 class (Base‘ndx)
5 cc 11015 . . . . . 6 class
64, 5cop 4583 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17168 . . . . . . 7 class +g
82, 7cfv 6489 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1540 . . . . . . . 8 class 𝑥
1210cv 1540 . . . . . . . 8 class 𝑦
13 caddc 11020 . . . . . . . 8 class +
1411, 12, 13co 7355 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 7357 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 4583 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 17169 . . . . . . 7 class .r
182, 17cfv 6489 . . . . . 6 class (.r‘ndx)
19 cmul 11022 . . . . . . . 8 class ·
2011, 12, 19co 7355 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 7357 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 4583 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 4581 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 17170 . . . . . . 7 class *𝑟
252, 24cfv 6489 . . . . . 6 class (*𝑟‘ndx)
26 ccj 15010 . . . . . 6 class
2725, 26cop 4583 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 4577 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3896 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 17174 . . . . . . 7 class TopSet
312, 30cfv 6489 . . . . . 6 class (TopSet‘ndx)
32 cabs 15148 . . . . . . . 8 class abs
33 cmin 11355 . . . . . . . 8 class
3432, 33ccom 5625 . . . . . . 7 class (abs ∘ − )
35 cmopn 21290 . . . . . . 7 class MetOpen
3634, 35cfv 6489 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 4583 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 17175 . . . . . . 7 class le
392, 38cfv 6489 . . . . . 6 class (le‘ndx)
40 cle 11158 . . . . . 6 class
4139, 40cop 4583 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 17177 . . . . . . 7 class dist
432, 42cfv 6489 . . . . . 6 class (dist‘ndx)
4443, 34cop 4583 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 4581 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 17178 . . . . . . 7 class UnifSet
472, 46cfv 6489 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 21291 . . . . . . 7 class metUnif
4934, 48cfv 6489 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 4583 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 4577 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3896 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3896 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1541 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21302  cnfldex  21303  cnfldbas  21304  mpocnfldadd  21305  mpocnfldmul  21307  cnfldcj  21309  cnfldtset  21310  cnfldle  21311  cnfldds  21312  cnfldunif  21313  cnfldfun  21314  cnfldfunALT  21315  dfcnfldOLD  21316  cffldtocusgr  29446
  Copyright terms: Public domain W3C validator