MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21293
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21295, cnfldadd 21298, cnfldmul 21300, cnfldcj 21301, cnfldtset 21302, cnfldle 21303, cnfldds 21304, and cnfldbas 21296. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21292 . 2 class fld
2 cnx 17104 . . . . . . 7 class ndx
3 cbs 17120 . . . . . . 7 class Base
42, 3cfv 6481 . . . . . 6 class (Base‘ndx)
5 cc 11004 . . . . . 6 class
64, 5cop 4582 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17161 . . . . . . 7 class +g
82, 7cfv 6481 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1540 . . . . . . . 8 class 𝑥
1210cv 1540 . . . . . . . 8 class 𝑦
13 caddc 11009 . . . . . . . 8 class +
1411, 12, 13co 7346 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 7348 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 4582 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 17162 . . . . . . 7 class .r
182, 17cfv 6481 . . . . . 6 class (.r‘ndx)
19 cmul 11011 . . . . . . . 8 class ·
2011, 12, 19co 7346 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 7348 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 4582 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 4580 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 17163 . . . . . . 7 class *𝑟
252, 24cfv 6481 . . . . . 6 class (*𝑟‘ndx)
26 ccj 15003 . . . . . 6 class
2725, 26cop 4582 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 4576 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3900 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 17167 . . . . . . 7 class TopSet
312, 30cfv 6481 . . . . . 6 class (TopSet‘ndx)
32 cabs 15141 . . . . . . . 8 class abs
33 cmin 11344 . . . . . . . 8 class
3432, 33ccom 5620 . . . . . . 7 class (abs ∘ − )
35 cmopn 21282 . . . . . . 7 class MetOpen
3634, 35cfv 6481 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 4582 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 17168 . . . . . . 7 class le
392, 38cfv 6481 . . . . . 6 class (le‘ndx)
40 cle 11147 . . . . . 6 class
4139, 40cop 4582 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 17170 . . . . . . 7 class dist
432, 42cfv 6481 . . . . . 6 class (dist‘ndx)
4443, 34cop 4582 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 4580 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 17171 . . . . . . 7 class UnifSet
472, 46cfv 6481 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 21283 . . . . . . 7 class metUnif
4934, 48cfv 6481 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 4582 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 4576 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3900 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3900 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1541 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21294  cnfldex  21295  cnfldbas  21296  mpocnfldadd  21297  mpocnfldmul  21299  cnfldcj  21301  cnfldtset  21302  cnfldle  21303  cnfldds  21304  cnfldunif  21305  cnfldfun  21306  cnfldfunALT  21307  dfcnfldOLD  21308  cffldtocusgr  29426
  Copyright terms: Public domain W3C validator