MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 20511
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 20513, cnfldadd 20515, cnfldmul 20516, cnfldcj 20517, cnfldtset 20518, cnfldle 20519, cnfldds 20520, and cnfldbas 20514. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 20510 . 2 class fld
2 cnx 16822 . . . . . . 7 class ndx
3 cbs 16840 . . . . . . 7 class Base
42, 3cfv 6418 . . . . . 6 class (Base‘ndx)
5 cc 10800 . . . . . 6 class
64, 5cop 4564 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 16888 . . . . . . 7 class +g
82, 7cfv 6418 . . . . . 6 class (+g‘ndx)
9 caddc 10805 . . . . . 6 class +
108, 9cop 4564 . . . . 5 class ⟨(+g‘ndx), + ⟩
11 cmulr 16889 . . . . . . 7 class .r
122, 11cfv 6418 . . . . . 6 class (.r‘ndx)
13 cmul 10807 . . . . . 6 class ·
1412, 13cop 4564 . . . . 5 class ⟨(.r‘ndx), · ⟩
156, 10, 14ctp 4562 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
16 cstv 16890 . . . . . . 7 class *𝑟
172, 16cfv 6418 . . . . . 6 class (*𝑟‘ndx)
18 ccj 14735 . . . . . 6 class
1917, 18cop 4564 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2019csn 4558 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2115, 20cun 3881 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
22 cts 16894 . . . . . . 7 class TopSet
232, 22cfv 6418 . . . . . 6 class (TopSet‘ndx)
24 cabs 14873 . . . . . . . 8 class abs
25 cmin 11135 . . . . . . . 8 class
2624, 25ccom 5584 . . . . . . 7 class (abs ∘ − )
27 cmopn 20500 . . . . . . 7 class MetOpen
2826, 27cfv 6418 . . . . . 6 class (MetOpen‘(abs ∘ − ))
2923, 28cop 4564 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
30 cple 16895 . . . . . . 7 class le
312, 30cfv 6418 . . . . . 6 class (le‘ndx)
32 cle 10941 . . . . . 6 class
3331, 32cop 4564 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
34 cds 16897 . . . . . . 7 class dist
352, 34cfv 6418 . . . . . 6 class (dist‘ndx)
3635, 26cop 4564 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
3729, 33, 36ctp 4562 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
38 cunif 16898 . . . . . . 7 class UnifSet
392, 38cfv 6418 . . . . . 6 class (UnifSet‘ndx)
40 cmetu 20501 . . . . . . 7 class metUnif
4126, 40cfv 6418 . . . . . 6 class (metUnif‘(abs ∘ − ))
4239, 41cop 4564 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
4342csn 4558 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
4437, 43cun 3881 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
4521, 44cun 3881 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
461, 45wceq 1539 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  20512  cnfldbas  20514  cnfldadd  20515  cnfldmul  20516  cnfldcj  20517  cnfldtset  20518  cnfldle  20519  cnfldds  20520  cnfldunif  20521  cnfldfun  20522  cnfldfunALT  20523  cffldtocusgr  27717
  Copyright terms: Public domain W3C validator