MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21145
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21147, cnfldadd 21149, cnfldmul 21150, cnfldcj 21151, cnfldtset 21152, cnfldle 21153, cnfldds 21154, and cnfldbas 21148. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21144 . 2 class fld
2 cnx 17130 . . . . . . 7 class ndx
3 cbs 17148 . . . . . . 7 class Base
42, 3cfv 6542 . . . . . 6 class (Base‘ndx)
5 cc 11110 . . . . . 6 class
64, 5cop 4633 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17201 . . . . . . 7 class +g
82, 7cfv 6542 . . . . . 6 class (+g‘ndx)
9 caddc 11115 . . . . . 6 class +
108, 9cop 4633 . . . . 5 class ⟨(+g‘ndx), + ⟩
11 cmulr 17202 . . . . . . 7 class .r
122, 11cfv 6542 . . . . . 6 class (.r‘ndx)
13 cmul 11117 . . . . . 6 class ·
1412, 13cop 4633 . . . . 5 class ⟨(.r‘ndx), · ⟩
156, 10, 14ctp 4631 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}
16 cstv 17203 . . . . . . 7 class *𝑟
172, 16cfv 6542 . . . . . 6 class (*𝑟‘ndx)
18 ccj 15047 . . . . . 6 class
1917, 18cop 4633 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2019csn 4627 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2115, 20cun 3945 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
22 cts 17207 . . . . . . 7 class TopSet
232, 22cfv 6542 . . . . . 6 class (TopSet‘ndx)
24 cabs 15185 . . . . . . . 8 class abs
25 cmin 11448 . . . . . . . 8 class
2624, 25ccom 5679 . . . . . . 7 class (abs ∘ − )
27 cmopn 21134 . . . . . . 7 class MetOpen
2826, 27cfv 6542 . . . . . 6 class (MetOpen‘(abs ∘ − ))
2923, 28cop 4633 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
30 cple 17208 . . . . . . 7 class le
312, 30cfv 6542 . . . . . 6 class (le‘ndx)
32 cle 11253 . . . . . 6 class
3331, 32cop 4633 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
34 cds 17210 . . . . . . 7 class dist
352, 34cfv 6542 . . . . . 6 class (dist‘ndx)
3635, 26cop 4633 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
3729, 33, 36ctp 4631 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
38 cunif 17211 . . . . . . 7 class UnifSet
392, 38cfv 6542 . . . . . 6 class (UnifSet‘ndx)
40 cmetu 21135 . . . . . . 7 class metUnif
4126, 40cfv 6542 . . . . . 6 class (metUnif‘(abs ∘ − ))
4239, 41cop 4633 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
4342csn 4627 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
4437, 43cun 3945 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
4521, 44cun 3945 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
461, 45wceq 1539 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21146  cnfldbas  21148  cnfldadd  21149  cnfldmul  21150  cnfldcj  21151  cnfldtset  21152  cnfldle  21153  cnfldds  21154  cnfldunif  21155  cnfldfun  21156  cnfldfunALT  21157  cnfldfunALTOLD  21158  cffldtocusgr  28971  gg-cnfldex  35467  gg-dfcnfld  35473
  Copyright terms: Public domain W3C validator