MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21314
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21316, cnfldadd 21319, cnfldmul 21321, cnfldcj 21322, cnfldtset 21323, cnfldle 21324, cnfldds 21325, and cnfldbas 21317. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21313 . 2 class fld
2 cnx 17210 . . . . . . 7 class ndx
3 cbs 17226 . . . . . . 7 class Base
42, 3cfv 6530 . . . . . 6 class (Base‘ndx)
5 cc 11125 . . . . . 6 class
64, 5cop 4607 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17269 . . . . . . 7 class +g
82, 7cfv 6530 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1539 . . . . . . . 8 class 𝑥
1210cv 1539 . . . . . . . 8 class 𝑦
13 caddc 11130 . . . . . . . 8 class +
1411, 12, 13co 7403 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 7405 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 4607 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 17270 . . . . . . 7 class .r
182, 17cfv 6530 . . . . . 6 class (.r‘ndx)
19 cmul 11132 . . . . . . . 8 class ·
2011, 12, 19co 7403 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 7405 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 4607 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 4605 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 17271 . . . . . . 7 class *𝑟
252, 24cfv 6530 . . . . . 6 class (*𝑟‘ndx)
26 ccj 15113 . . . . . 6 class
2725, 26cop 4607 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 4601 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3924 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 17275 . . . . . . 7 class TopSet
312, 30cfv 6530 . . . . . 6 class (TopSet‘ndx)
32 cabs 15251 . . . . . . . 8 class abs
33 cmin 11464 . . . . . . . 8 class
3432, 33ccom 5658 . . . . . . 7 class (abs ∘ − )
35 cmopn 21303 . . . . . . 7 class MetOpen
3634, 35cfv 6530 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 4607 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 17276 . . . . . . 7 class le
392, 38cfv 6530 . . . . . 6 class (le‘ndx)
40 cle 11268 . . . . . 6 class
4139, 40cop 4607 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 17278 . . . . . . 7 class dist
432, 42cfv 6530 . . . . . 6 class (dist‘ndx)
4443, 34cop 4607 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 4605 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 17279 . . . . . . 7 class UnifSet
472, 46cfv 6530 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 21304 . . . . . . 7 class metUnif
4934, 48cfv 6530 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 4607 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 4601 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3924 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3924 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1540 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21315  cnfldex  21316  cnfldbas  21317  mpocnfldadd  21318  mpocnfldmul  21320  cnfldcj  21322  cnfldtset  21323  cnfldle  21324  cnfldds  21325  cnfldunif  21326  cnfldfun  21327  cnfldfunALT  21328  dfcnfldOLD  21329  cffldtocusgr  29372
  Copyright terms: Public domain W3C validator