MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnfld Structured version   Visualization version   GIF version

Definition df-cnfld 21382
Description: The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator, for instance (ℂfld ↾ 𝔸) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex 21384, cnfldadd 21387, cnfldmul 21389, cnfldcj 21390, cnfldtset 21391, cnfldle 21392, cnfldds 21393, and cnfldbas 21385. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

Assertion
Ref Expression
df-cnfld fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-cnfld
StepHypRef Expression
1 ccnfld 21381 . 2 class fld
2 cnx 17226 . . . . . . 7 class ndx
3 cbs 17244 . . . . . . 7 class Base
42, 3cfv 6562 . . . . . 6 class (Base‘ndx)
5 cc 11150 . . . . . 6 class
64, 5cop 4636 . . . . 5 class ⟨(Base‘ndx), ℂ⟩
7 cplusg 17297 . . . . . . 7 class +g
82, 7cfv 6562 . . . . . 6 class (+g‘ndx)
9 vx . . . . . . 7 setvar 𝑥
10 vy . . . . . . 7 setvar 𝑦
119cv 1535 . . . . . . . 8 class 𝑥
1210cv 1535 . . . . . . . 8 class 𝑦
13 caddc 11155 . . . . . . . 8 class +
1411, 12, 13co 7430 . . . . . . 7 class (𝑥 + 𝑦)
159, 10, 5, 5, 14cmpo 7432 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
168, 15cop 4636 . . . . 5 class ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩
17 cmulr 17298 . . . . . . 7 class .r
182, 17cfv 6562 . . . . . 6 class (.r‘ndx)
19 cmul 11157 . . . . . . . 8 class ·
2011, 12, 19co 7430 . . . . . . 7 class (𝑥 · 𝑦)
219, 10, 5, 5, 20cmpo 7432 . . . . . 6 class (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2218, 21cop 4636 . . . . 5 class ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩
236, 16, 22ctp 4634 . . . 4 class {⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩}
24 cstv 17299 . . . . . . 7 class *𝑟
252, 24cfv 6562 . . . . . 6 class (*𝑟‘ndx)
26 ccj 15131 . . . . . 6 class
2725, 26cop 4636 . . . . 5 class ⟨(*𝑟‘ndx), ∗⟩
2827csn 4630 . . . 4 class {⟨(*𝑟‘ndx), ∗⟩}
2923, 28cun 3960 . . 3 class ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
30 cts 17303 . . . . . . 7 class TopSet
312, 30cfv 6562 . . . . . 6 class (TopSet‘ndx)
32 cabs 15269 . . . . . . . 8 class abs
33 cmin 11489 . . . . . . . 8 class
3432, 33ccom 5692 . . . . . . 7 class (abs ∘ − )
35 cmopn 21371 . . . . . . 7 class MetOpen
3634, 35cfv 6562 . . . . . 6 class (MetOpen‘(abs ∘ − ))
3731, 36cop 4636 . . . . 5 class ⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩
38 cple 17304 . . . . . . 7 class le
392, 38cfv 6562 . . . . . 6 class (le‘ndx)
40 cle 11293 . . . . . 6 class
4139, 40cop 4636 . . . . 5 class ⟨(le‘ndx), ≤ ⟩
42 cds 17306 . . . . . . 7 class dist
432, 42cfv 6562 . . . . . 6 class (dist‘ndx)
4443, 34cop 4636 . . . . 5 class ⟨(dist‘ndx), (abs ∘ − )⟩
4537, 41, 44ctp 4634 . . . 4 class {⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩}
46 cunif 17307 . . . . . . 7 class UnifSet
472, 46cfv 6562 . . . . . 6 class (UnifSet‘ndx)
48 cmetu 21372 . . . . . . 7 class metUnif
4934, 48cfv 6562 . . . . . 6 class (metUnif‘(abs ∘ − ))
5047, 49cop 4636 . . . . 5 class ⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩
5150csn 4630 . . . 4 class {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}
5245, 51cun 3960 . . 3 class ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩})
5329, 52cun 3960 . 2 class (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
541, 53wceq 1536 1 wff fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
Colors of variables: wff setvar class
This definition is referenced by:  cnfldstr  21383  cnfldex  21384  cnfldbas  21385  mpocnfldadd  21386  mpocnfldmul  21388  cnfldcj  21390  cnfldtset  21391  cnfldle  21392  cnfldds  21393  cnfldunif  21394  cnfldfun  21395  cnfldfunALT  21396  dfcnfldOLD  21397  cffldtocusgr  29478
  Copyright terms: Public domain W3C validator