Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrsex | Structured version Visualization version GIF version |
Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrsex | ⊢ ℝ*𝑠 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xrs 17213 | . 2 ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | |
2 | tpex 7597 | . . 3 ⊢ {〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∈ V | |
3 | tpex 7597 | . . 3 ⊢ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉} ∈ V | |
4 | 2, 3 | unex 7596 | . 2 ⊢ ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ ℝ*𝑠 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ifcif 4459 {ctp 4565 〈cop 4567 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ℝ*cxr 11008 ≤ cle 11010 -𝑒cxne 12845 +𝑒 cxad 12846 ·e cxmu 12847 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 TopSetcts 16968 lecple 16969 distcds 16971 ordTopcordt 17210 ℝ*𝑠cxrs 17211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-tp 4566 df-uni 4840 df-xrs 17213 |
This theorem is referenced by: imasdsf1olem 23526 xrslt 31285 xrsmulgzz 31287 xrstos 31288 xrsp0 31290 xrsp1 31291 pnfinf 31437 xrnarchi 31438 |
Copyright terms: Public domain | W3C validator |