| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsex | Structured version Visualization version GIF version | ||
| Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrsex | ⊢ ℝ*𝑠 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xrs 17442 | . 2 ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | |
| 2 | tpex 7702 | . . 3 ⊢ {〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∈ V | |
| 3 | tpex 7702 | . . 3 ⊢ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉} ∈ V | |
| 4 | 2, 3 | unex 7700 | . 2 ⊢ ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ ℝ*𝑠 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 ifcif 4484 {ctp 4589 〈cop 4591 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℝ*cxr 11185 ≤ cle 11187 -𝑒cxne 13047 +𝑒 cxad 13048 ·e cxmu 13049 ndxcnx 17140 Basecbs 17156 +gcplusg 17197 .rcmulr 17198 TopSetcts 17203 lecple 17204 distcds 17206 ordTopcordt 17439 ℝ*𝑠cxrs 17440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-sn 4586 df-pr 4588 df-tp 4590 df-uni 4868 df-xrs 17442 |
| This theorem is referenced by: imasdsf1olem 24295 xrslt 32992 xrsmulgzz 32994 xrstos 32995 xrsp0 32997 xrsp1 32998 pnfinf 33153 xrnarchi 33154 |
| Copyright terms: Public domain | W3C validator |