| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsex | Structured version Visualization version GIF version | ||
| Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrsex | ⊢ ℝ*𝑠 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xrs 17465 | . 2 ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | |
| 2 | tpex 7722 | . . 3 ⊢ {〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∈ V | |
| 3 | tpex 7722 | . . 3 ⊢ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉} ∈ V | |
| 4 | 2, 3 | unex 7720 | . 2 ⊢ ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ ℝ*𝑠 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ifcif 4488 {ctp 4593 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℝ*cxr 11207 ≤ cle 11209 -𝑒cxne 13069 +𝑒 cxad 13070 ·e cxmu 13071 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 TopSetcts 17226 lecple 17227 distcds 17229 ordTopcordt 17462 ℝ*𝑠cxrs 17463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-tp 4594 df-uni 4872 df-xrs 17465 |
| This theorem is referenced by: imasdsf1olem 24261 xrslt 32945 xrsmulgzz 32947 xrstos 32948 xrsp0 32950 xrsp1 32951 pnfinf 33137 xrnarchi 33138 |
| Copyright terms: Public domain | W3C validator |