Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrsex | Structured version Visualization version GIF version |
Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrsex | ⊢ ℝ*𝑠 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xrs 17130 | . 2 ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | |
2 | tpex 7575 | . . 3 ⊢ {〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∈ V | |
3 | tpex 7575 | . . 3 ⊢ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉} ∈ V | |
4 | 2, 3 | unex 7574 | . 2 ⊢ ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ ℝ*𝑠 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ifcif 4456 {ctp 4562 〈cop 4564 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℝ*cxr 10939 ≤ cle 10941 -𝑒cxne 12774 +𝑒 cxad 12775 ·e cxmu 12776 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 TopSetcts 16894 lecple 16895 distcds 16897 ordTopcordt 17127 ℝ*𝑠cxrs 17128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-tp 4563 df-uni 4837 df-xrs 17130 |
This theorem is referenced by: imasdsf1olem 23434 xrslt 31187 xrsmulgzz 31189 xrstos 31190 xrsp0 31192 xrsp1 31193 pnfinf 31339 xrnarchi 31340 |
Copyright terms: Public domain | W3C validator |