MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsex Structured version   Visualization version   GIF version

Theorem xrsex 21301
Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xrsex *𝑠 ∈ V

Proof of Theorem xrsex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrs 17472 . 2 *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
2 tpex 7725 . . 3 {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∈ V
3 tpex 7725 . . 3 {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩} ∈ V
42, 3unex 7723 . 2 ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}) ∈ V
51, 4eqeltri 2825 1 *𝑠 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450  cun 3915  ifcif 4491  {ctp 4596  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  cmpo 7392  *cxr 11214  cle 11216  -𝑒cxne 13076   +𝑒 cxad 13077   ·e cxmu 13078  ndxcnx 17170  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  TopSetcts 17233  lecple 17234  distcds 17236  ordTopcordt 17469  *𝑠cxrs 17470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-tp 4597  df-uni 4875  df-xrs 17472
This theorem is referenced by:  imasdsf1olem  24268  xrslt  32952  xrsmulgzz  32954  xrstos  32955  xrsp0  32957  xrsp1  32958  pnfinf  33144  xrnarchi  33145
  Copyright terms: Public domain W3C validator