MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsex Structured version   Visualization version   GIF version

Theorem xrsex 21418
Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
xrsex *𝑠 ∈ V

Proof of Theorem xrsex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xrs 17562 . 2 *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
2 tpex 7781 . . 3 {⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∈ V
3 tpex 7781 . . 3 {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩} ∈ V
42, 3unex 7779 . 2 ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩}) ∈ V
51, 4eqeltri 2840 1 *𝑠 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  cun 3974  ifcif 4548  {ctp 4652  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448  cmpo 7450  *cxr 11323  cle 11325  -𝑒cxne 13172   +𝑒 cxad 13173   ·e cxmu 13174  ndxcnx 17240  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  TopSetcts 17317  lecple 17318  distcds 17320  ordTopcordt 17559  *𝑠cxrs 17560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-tp 4653  df-uni 4932  df-xrs 17562
This theorem is referenced by:  imasdsf1olem  24404  xrslt  32990  xrsmulgzz  32992  xrstos  32993  xrsp0  32995  xrsp1  32996  pnfinf  33163  xrnarchi  33164
  Copyright terms: Public domain W3C validator