| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsex | Structured version Visualization version GIF version | ||
| Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrsex | ⊢ ℝ*𝑠 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xrs 17516 | . 2 ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | |
| 2 | tpex 7740 | . . 3 ⊢ {〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∈ V | |
| 3 | tpex 7740 | . . 3 ⊢ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉} ∈ V | |
| 4 | 2, 3 | unex 7738 | . 2 ⊢ ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) ∈ V |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ ℝ*𝑠 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 ifcif 4500 {ctp 4605 〈cop 4607 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ℝ*cxr 11268 ≤ cle 11270 -𝑒cxne 13125 +𝑒 cxad 13126 ·e cxmu 13127 ndxcnx 17212 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 TopSetcts 17277 lecple 17278 distcds 17280 ordTopcordt 17513 ℝ*𝑠cxrs 17514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-tp 4606 df-uni 4884 df-xrs 17516 |
| This theorem is referenced by: imasdsf1olem 24312 xrslt 32999 xrsmulgzz 33001 xrstos 33002 xrsp0 33004 xrsp1 33005 pnfinf 33181 xrnarchi 33182 |
| Copyright terms: Public domain | W3C validator |