MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsds Structured version   Visualization version   GIF version

Theorem xrsds 20564
Description: The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsds 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem xrsds
StepHypRef Expression
1 xrsds.d . 2 𝐷 = (dist‘ℝ*𝑠)
2 id 22 . . . . . . . 8 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
3 xnegcl 12584 . . . . . . . 8 (𝑥 ∈ ℝ* → -𝑒𝑥 ∈ ℝ*)
4 xaddcl 12610 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
52, 3, 4syl2anr 599 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
6 xnegcl 12584 . . . . . . . 8 (𝑦 ∈ ℝ* → -𝑒𝑦 ∈ ℝ*)
7 xaddcl 12610 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ -𝑒𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
86, 7sylan2 595 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
95, 8ifcld 4485 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*)
109rgen2 3191 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*
11 eqid 2821 . . . . . 6 (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
1211fmpo 7741 . . . . 5 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ* ↔ (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))):(ℝ* × ℝ*)⟶ℝ*)
1310, 12mpbi 233 . . . 4 (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))):(ℝ* × ℝ*)⟶ℝ*
14 xrex 12364 . . . . 5 * ∈ V
1514, 14xpex 7451 . . . 4 (ℝ* × ℝ*) ∈ V
16 fex2 7613 . . . 4 (((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))):(ℝ* × ℝ*)⟶ℝ* ∧ (ℝ* × ℝ*) ∈ V ∧ ℝ* ∈ V) → (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) ∈ V)
1713, 15, 14, 16mp3an 1458 . . 3 (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) ∈ V
18 df-xrs 16754 . . . 4 *𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
1918odrngds 16664 . . 3 ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) ∈ V → (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) = (dist‘ℝ*𝑠))
2017, 19ax-mp 5 . 2 (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) = (dist‘ℝ*𝑠)
211, 20eqtr4i 2847 1 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2115  wral 3126  Vcvv 3471  ifcif 4440   class class class wbr 5039   × cxp 5526  wf 6324  cfv 6328  (class class class)co 7130  cmpo 7132  *cxr 10651  cle 10653  -𝑒cxne 12482   +𝑒 cxad 12483   ·e cxmu 12484  distcds 16553  ordTopcordt 16751  *𝑠cxrs 16752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-xneg 12485  df-xadd 12486  df-fz 12876  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-plusg 16557  df-mulr 16558  df-tset 16563  df-ple 16564  df-ds 16566  df-xrs 16754
This theorem is referenced by:  xrsdsval  20565  xrsxmet  23393
  Copyright terms: Public domain W3C validator