![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsds | Structured version Visualization version GIF version |
Description: The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrsds.d | β’ π· = (distββ*π ) |
Ref | Expression |
---|---|
xrsds | β’ π· = (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrsds.d | . 2 β’ π· = (distββ*π ) | |
2 | id 22 | . . . . . . . 8 β’ (π¦ β β* β π¦ β β*) | |
3 | xnegcl 13196 | . . . . . . . 8 β’ (π₯ β β* β -ππ₯ β β*) | |
4 | xaddcl 13222 | . . . . . . . 8 β’ ((π¦ β β* β§ -ππ₯ β β*) β (π¦ +π -ππ₯) β β*) | |
5 | 2, 3, 4 | syl2anr 597 | . . . . . . 7 β’ ((π₯ β β* β§ π¦ β β*) β (π¦ +π -ππ₯) β β*) |
6 | xnegcl 13196 | . . . . . . . 8 β’ (π¦ β β* β -ππ¦ β β*) | |
7 | xaddcl 13222 | . . . . . . . 8 β’ ((π₯ β β* β§ -ππ¦ β β*) β (π₯ +π -ππ¦) β β*) | |
8 | 6, 7 | sylan2 593 | . . . . . . 7 β’ ((π₯ β β* β§ π¦ β β*) β (π₯ +π -ππ¦) β β*) |
9 | 5, 8 | ifcld 4574 | . . . . . 6 β’ ((π₯ β β* β§ π¦ β β*) β if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦)) β β*) |
10 | 9 | rgen2 3197 | . . . . 5 β’ βπ₯ β β* βπ¦ β β* if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦)) β β* |
11 | eqid 2732 | . . . . . 6 β’ (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) = (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) | |
12 | 11 | fmpo 8056 | . . . . 5 β’ (βπ₯ β β* βπ¦ β β* if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦)) β β* β (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))):(β* Γ β*)βΆβ*) |
13 | 10, 12 | mpbi 229 | . . . 4 β’ (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))):(β* Γ β*)βΆβ* |
14 | xrex 12975 | . . . . 5 β’ β* β V | |
15 | 14, 14 | xpex 7742 | . . . 4 β’ (β* Γ β*) β V |
16 | fex2 7926 | . . . 4 β’ (((π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))):(β* Γ β*)βΆβ* β§ (β* Γ β*) β V β§ β* β V) β (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) β V) | |
17 | 13, 15, 14, 16 | mp3an 1461 | . . 3 β’ (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) β V |
18 | df-xrs 17452 | . . . 4 β’ β*π = ({β¨(Baseβndx), β*β©, β¨(+gβndx), +π β©, β¨(.rβndx), Β·e β©} βͺ {β¨(TopSetβndx), (ordTopβ β€ )β©, β¨(leβndx), β€ β©, β¨(distβndx), (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦)))β©}) | |
19 | 18 | odrngds 17358 | . . 3 β’ ((π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) β V β (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) = (distββ*π )) |
20 | 17, 19 | ax-mp 5 | . 2 β’ (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) = (distββ*π ) |
21 | 1, 20 | eqtr4i 2763 | 1 β’ π· = (π₯ β β*, π¦ β β* β¦ if(π₯ β€ π¦, (π¦ +π -ππ₯), (π₯ +π -ππ¦))) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 Vcvv 3474 ifcif 4528 class class class wbr 5148 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7411 β cmpo 7413 β*cxr 11251 β€ cle 11253 -πcxne 13093 +π cxad 13094 Β·e cxmu 13095 distcds 17210 ordTopcordt 17449 β*π cxrs 17450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-xneg 13096 df-xadd 13097 df-fz 13489 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-tset 17220 df-ple 17221 df-ds 17223 df-xrs 17452 |
This theorem is referenced by: xrsdsval 21189 xrsxmet 24545 |
Copyright terms: Public domain | W3C validator |