Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrsadd | Structured version Visualization version GIF version |
Description: The addition operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrsadd | ⊢ +𝑒 = (+g‘ℝ*𝑠) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xaddf 12967 | . . 3 ⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | |
2 | xrex 12736 | . . . 4 ⊢ ℝ* ∈ V | |
3 | 2, 2 | xpex 7612 | . . 3 ⊢ (ℝ* × ℝ*) ∈ V |
4 | fex2 7789 | . . 3 ⊢ (( +𝑒 :(ℝ* × ℝ*)⟶ℝ* ∧ (ℝ* × ℝ*) ∈ V ∧ ℝ* ∈ V) → +𝑒 ∈ V) | |
5 | 1, 3, 2, 4 | mp3an 1460 | . 2 ⊢ +𝑒 ∈ V |
6 | df-xrs 17222 | . . 3 ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | |
7 | 6 | odrngplusg 17124 | . 2 ⊢ ( +𝑒 ∈ V → +𝑒 = (+g‘ℝ*𝑠)) |
8 | 5, 7 | ax-mp 5 | 1 ⊢ +𝑒 = (+g‘ℝ*𝑠) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3433 ifcif 4460 class class class wbr 5075 × cxp 5588 ⟶wf 6433 ‘cfv 6437 (class class class)co 7284 ∈ cmpo 7286 ℝ*cxr 11017 ≤ cle 11019 -𝑒cxne 12854 +𝑒 cxad 12855 ·e cxmu 12856 +gcplusg 16971 ordTopcordt 17219 ℝ*𝑠cxrs 17220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-z 12329 df-dec 12447 df-uz 12592 df-xadd 12858 df-fz 13249 df-struct 16857 df-slot 16892 df-ndx 16904 df-base 16922 df-plusg 16984 df-mulr 16985 df-tset 16990 df-ple 16991 df-ds 16993 df-xrs 17222 |
This theorem is referenced by: xrsmgm 20642 xrsnsgrp 20643 xrs1mnd 20645 xrs10 20646 xrs1cmn 20647 xrge0subm 20648 imasdsf1olem 23535 xrge0gsumle 24005 xrs0 31293 xrsinvgval 31295 xrsmulgzz 31296 xrge0plusg 31305 xrge0tmdALT 31905 esumpfinvallem 32051 sge0tsms 43925 |
Copyright terms: Public domain | W3C validator |