| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsadd | Structured version Visualization version GIF version | ||
| Description: The addition operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrsadd | ⊢ +𝑒 = (+g‘ℝ*𝑠) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xaddf 13118 | . . 3 ⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | |
| 2 | xrex 12880 | . . . 4 ⊢ ℝ* ∈ V | |
| 3 | 2, 2 | xpex 7681 | . . 3 ⊢ (ℝ* × ℝ*) ∈ V |
| 4 | fex2 7861 | . . 3 ⊢ (( +𝑒 :(ℝ* × ℝ*)⟶ℝ* ∧ (ℝ* × ℝ*) ∈ V ∧ ℝ* ∈ V) → +𝑒 ∈ V) | |
| 5 | 1, 3, 2, 4 | mp3an 1463 | . 2 ⊢ +𝑒 ∈ V |
| 6 | df-xrs 17401 | . . 3 ⊢ ℝ*𝑠 = ({〈(Base‘ndx), ℝ*〉, 〈(+g‘ndx), +𝑒 〉, 〈(.r‘ndx), ·e 〉} ∪ {〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))〉}) | |
| 7 | 6 | odrngplusg 17304 | . 2 ⊢ ( +𝑒 ∈ V → +𝑒 = (+g‘ℝ*𝑠)) |
| 8 | 5, 7 | ax-mp 5 | 1 ⊢ +𝑒 = (+g‘ℝ*𝑠) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4470 class class class wbr 5086 × cxp 5609 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ℝ*cxr 11140 ≤ cle 11142 -𝑒cxne 13003 +𝑒 cxad 13004 ·e cxmu 13005 +gcplusg 17156 ordTopcordt 17398 ℝ*𝑠cxrs 17399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-xadd 13007 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-tset 17175 df-ple 17176 df-ds 17178 df-xrs 17401 |
| This theorem is referenced by: xrsmgm 21338 xrsnsgrp 21339 xrge0plusg 21371 xrs1mnd 21372 xrs10 21373 xrs1cmn 21374 xrge0subm 21375 imasdsf1olem 24283 xrge0gsumle 24744 xrs0 32979 xrsinvgval 32981 xrsmulgzz 32982 xrge0tmdALT 33951 esumpfinvallem 34079 sge0tsms 46418 |
| Copyright terms: Public domain | W3C validator |