|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dfifp6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| dfifp6 | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜒 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ifp 1064 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
| 2 | ancom 460 | . . . 4 ⊢ ((¬ 𝜑 ∧ 𝜒) ↔ (𝜒 ∧ ¬ 𝜑)) | |
| 3 | annim 403 | . . . 4 ⊢ ((𝜒 ∧ ¬ 𝜑) ↔ ¬ (𝜒 → 𝜑)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ ((¬ 𝜑 ∧ 𝜒) ↔ ¬ (𝜒 → 𝜑)) | 
| 5 | 4 | orbi2i 913 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜒 → 𝜑))) | 
| 6 | 1, 5 | bitri 275 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜒 → 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: dfifp7 1070 ifpdfan2 43476 | 
| Copyright terms: Public domain | W3C validator |