MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp6 Structured version   Visualization version   GIF version

Theorem dfifp6 1065
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.)
Assertion
Ref Expression
dfifp6 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ ¬ (𝜒𝜑)))

Proof of Theorem dfifp6
StepHypRef Expression
1 df-ifp 1060 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
2 ancom 460 . . . 4 ((¬ 𝜑𝜒) ↔ (𝜒 ∧ ¬ 𝜑))
3 annim 403 . . . 4 ((𝜒 ∧ ¬ 𝜑) ↔ ¬ (𝜒𝜑))
42, 3bitri 274 . . 3 ((¬ 𝜑𝜒) ↔ ¬ (𝜒𝜑))
54orbi2i 909 . 2 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ↔ ((𝜑𝜓) ∨ ¬ (𝜒𝜑)))
61, 5bitri 274 1 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ ¬ (𝜒𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  dfifp7  1066  ifpdfan2  40968
  Copyright terms: Public domain W3C validator