MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp5 Structured version   Visualization version   GIF version

Theorem dfifp5 1066
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.)
Assertion
Ref Expression
dfifp5 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜒)))

Proof of Theorem dfifp5
StepHypRef Expression
1 dfifp2 1063 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (¬ 𝜑𝜒)))
2 imor 851 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
32anbi1i 625 . 2 (((𝜑𝜓) ∧ (¬ 𝜑𝜒)) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜒)))
41, 3bitri 275 1 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  if-wif 1061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ifp 1062
This theorem is referenced by:  ifpn  1072
  Copyright terms: Public domain W3C validator