MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  annim Structured version   Visualization version   GIF version

Theorem annim 403
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
annim ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem annim
StepHypRef Expression
1 iman 401 . 2 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
21con2bii 357 1 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  pm4.61  404  pm4.52  981  xordi  1013  dfifp6  1065  exanali  1863  2exanali  1864  difin0ss  4299  ordsssuc2  6339  tfindsg  7682  findsg  7720  hashfun  14080  isprm5  16340  mdetunilem8  21676  4cycl2vnunb  28555  axacprim  33548  ceqsralv2  33572  dfrdg4  34180  andnand1  34517  relowlpssretop  35462  nlpineqsn  35506  poimirlem1  35705  poimir  35737  limsupre2lem  43155  aifftbifffaibif  44303  nfermltl8rev  45082  nfermltl2rev  45083
  Copyright terms: Public domain W3C validator