| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version | ||
| Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.61 404 pm4.52 986 xordi 1018 dfifp6 1068 exanali 1860 2exanali 1861 ceqsralbv 3612 difin0ss 4323 ordsssuc2 6399 tfindsg 7791 findsg 7827 hashfun 14344 isprm5 16618 mdetunilem8 22535 4cycl2vnunb 30268 mxidlirred 33435 axregs 35143 axacprim 35749 dfrdg4 35991 andnand1 36441 relowlpssretop 37404 nlpineqsn 37448 poimirlem1 37667 poimir 37699 fimgmcyc 42573 ralopabb 43450 rexanuz2nf 45536 limsupre2lem 45768 aifftbifffaibif 46958 nfermltl8rev 47779 nfermltl2rev 47780 |
| Copyright terms: Public domain | W3C validator |