MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  annim Structured version   Visualization version   GIF version

Theorem annim 403
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
annim ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem annim
StepHypRef Expression
1 iman 401 . 2 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
21con2bii 357 1 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm4.61  404  pm4.52  986  xordi  1018  dfifp6  1068  exanali  1859  2exanali  1860  ceqsralbv  3623  difin0ss  4336  ordsssuc2  6425  tfindsg  7837  findsg  7873  hashfun  14402  isprm5  16677  mdetunilem8  22506  4cycl2vnunb  30219  mxidlirred  33443  axacprim  35694  dfrdg4  35939  andnand1  36389  relowlpssretop  37352  nlpineqsn  37396  poimirlem1  37615  poimir  37647  fimgmcyc  42522  ralopabb  43400  rexanuz2nf  45488  limsupre2lem  45722  aifftbifffaibif  46922  nfermltl8rev  47743  nfermltl2rev  47744
  Copyright terms: Public domain W3C validator