| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version | ||
| Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.61 404 pm4.52 986 xordi 1018 dfifp6 1068 exanali 1859 2exanali 1860 ceqsralbv 3614 difin0ss 4326 ordsssuc2 6404 tfindsg 7801 findsg 7837 hashfun 14362 isprm5 16636 mdetunilem8 22522 4cycl2vnunb 30252 mxidlirred 33422 axregs 35076 axacprim 35682 dfrdg4 35927 andnand1 36377 relowlpssretop 37340 nlpineqsn 37384 poimirlem1 37603 poimir 37635 fimgmcyc 42510 ralopabb 43387 rexanuz2nf 45475 limsupre2lem 45709 aifftbifffaibif 46909 nfermltl8rev 47730 nfermltl2rev 47731 |
| Copyright terms: Public domain | W3C validator |