Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version |
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 401 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm4.61 404 pm4.52 981 xordi 1013 dfifp6 1065 exanali 1863 2exanali 1864 difin0ss 4299 ordsssuc2 6339 tfindsg 7682 findsg 7720 hashfun 14080 isprm5 16340 mdetunilem8 21676 4cycl2vnunb 28555 axacprim 33548 ceqsralv2 33572 dfrdg4 34180 andnand1 34517 relowlpssretop 35462 nlpineqsn 35506 poimirlem1 35705 poimir 35737 limsupre2lem 43155 aifftbifffaibif 44303 nfermltl8rev 45082 nfermltl2rev 45083 |
Copyright terms: Public domain | W3C validator |