![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version |
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 401 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm4.61 404 pm4.52 985 xordi 1017 dfifp6 1069 exanali 1858 2exanali 1859 ceqsralbv 3670 difin0ss 4396 ordsssuc2 6486 tfindsg 7898 findsg 7937 hashfun 14486 isprm5 16754 mdetunilem8 22646 4cycl2vnunb 30322 mxidlirred 33465 axacprim 35669 dfrdg4 35915 andnand1 36367 relowlpssretop 37330 nlpineqsn 37374 poimirlem1 37581 poimir 37613 fimgmcyc 42489 ralopabb 43373 rexanuz2nf 45408 limsupre2lem 45645 aifftbifffaibif 46836 nfermltl8rev 47616 nfermltl2rev 47617 |
Copyright terms: Public domain | W3C validator |