| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version | ||
| Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.61 404 pm4.52 986 xordi 1018 dfifp6 1068 exanali 1859 2exanali 1860 ceqsralbv 3623 difin0ss 4336 ordsssuc2 6425 tfindsg 7837 findsg 7873 hashfun 14402 isprm5 16677 mdetunilem8 22506 4cycl2vnunb 30219 mxidlirred 33443 axacprim 35694 dfrdg4 35939 andnand1 36389 relowlpssretop 37352 nlpineqsn 37396 poimirlem1 37615 poimir 37647 fimgmcyc 42522 ralopabb 43400 rexanuz2nf 45488 limsupre2lem 45722 aifftbifffaibif 46922 nfermltl8rev 47743 nfermltl2rev 47744 |
| Copyright terms: Public domain | W3C validator |