| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version | ||
| Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.61 404 pm4.52 986 xordi 1018 dfifp6 1068 exanali 1859 2exanali 1860 ceqsralbv 3626 difin0ss 4339 ordsssuc2 6428 tfindsg 7840 findsg 7876 hashfun 14409 isprm5 16684 mdetunilem8 22513 4cycl2vnunb 30226 mxidlirred 33450 axacprim 35701 dfrdg4 35946 andnand1 36396 relowlpssretop 37359 nlpineqsn 37403 poimirlem1 37622 poimir 37654 fimgmcyc 42529 ralopabb 43407 rexanuz2nf 45495 limsupre2lem 45729 aifftbifffaibif 46926 nfermltl8rev 47747 nfermltl2rev 47748 |
| Copyright terms: Public domain | W3C validator |