| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version | ||
| Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.61 404 pm4.52 986 xordi 1018 dfifp6 1068 exanali 1860 2exanali 1861 ceqsralbv 3608 difin0ss 4322 ordsssuc2 6406 tfindsg 7799 findsg 7835 hashfun 14348 isprm5 16622 mdetunilem8 22537 4cycl2vnunb 30274 mxidlirred 33446 axregs 35168 axacprim 35774 dfrdg4 36018 andnand1 36468 relowlpssretop 37431 nlpineqsn 37475 poimirlem1 37684 poimir 37716 fimgmcyc 42655 ralopabb 43531 rexanuz2nf 45617 limsupre2lem 45849 aifftbifffaibif 47048 nfermltl8rev 47869 nfermltl2rev 47870 |
| Copyright terms: Public domain | W3C validator |