MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  annim Structured version   Visualization version   GIF version

Theorem annim 403
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
annim ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem annim
StepHypRef Expression
1 iman 401 . 2 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
21con2bii 357 1 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm4.61  404  pm4.52  986  xordi  1018  dfifp6  1068  exanali  1859  2exanali  1860  ceqsralbv  3626  difin0ss  4339  ordsssuc2  6428  tfindsg  7840  findsg  7876  hashfun  14409  isprm5  16684  mdetunilem8  22513  4cycl2vnunb  30226  mxidlirred  33450  axacprim  35701  dfrdg4  35946  andnand1  36396  relowlpssretop  37359  nlpineqsn  37403  poimirlem1  37622  poimir  37654  fimgmcyc  42529  ralopabb  43407  rexanuz2nf  45495  limsupre2lem  45729  aifftbifffaibif  46926  nfermltl8rev  47747  nfermltl2rev  47748
  Copyright terms: Public domain W3C validator