Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version |
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 402 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | con2bii 358 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm4.61 405 pm4.52 982 xordi 1014 dfifp6 1066 exanali 1862 2exanali 1863 difin0ss 4302 ordsssuc2 6354 tfindsg 7707 findsg 7746 hashfun 14152 isprm5 16412 mdetunilem8 21768 4cycl2vnunb 28654 axacprim 33648 ceqsralv2 33670 dfrdg4 34253 andnand1 34590 relowlpssretop 35535 nlpineqsn 35579 poimirlem1 35778 poimir 35810 limsupre2lem 43265 aifftbifffaibif 44416 nfermltl8rev 45194 nfermltl2rev 45195 |
Copyright terms: Public domain | W3C validator |