MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  annim Structured version   Visualization version   GIF version

Theorem annim 403
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
annim ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem annim
StepHypRef Expression
1 iman 401 . 2 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
21con2bii 357 1 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm4.61  404  pm4.52  986  xordi  1018  dfifp6  1068  exanali  1860  2exanali  1861  ceqsralbv  3608  difin0ss  4322  ordsssuc2  6406  tfindsg  7799  findsg  7835  hashfun  14348  isprm5  16622  mdetunilem8  22537  4cycl2vnunb  30274  mxidlirred  33446  axregs  35168  axacprim  35774  dfrdg4  36018  andnand1  36468  relowlpssretop  37431  nlpineqsn  37475  poimirlem1  37684  poimir  37716  fimgmcyc  42655  ralopabb  43531  rexanuz2nf  45617  limsupre2lem  45849  aifftbifffaibif  47048  nfermltl8rev  47869  nfermltl2rev  47870
  Copyright terms: Public domain W3C validator