MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  annim Structured version   Visualization version   GIF version

Theorem annim 403
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
annim ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem annim
StepHypRef Expression
1 iman 401 . 2 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
21con2bii 357 1 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm4.61  404  pm4.52  985  xordi  1017  dfifp6  1069  exanali  1858  2exanali  1859  ceqsralbv  3670  difin0ss  4396  ordsssuc2  6486  tfindsg  7898  findsg  7937  hashfun  14486  isprm5  16754  mdetunilem8  22646  4cycl2vnunb  30322  mxidlirred  33465  axacprim  35669  dfrdg4  35915  andnand1  36367  relowlpssretop  37330  nlpineqsn  37374  poimirlem1  37581  poimir  37613  fimgmcyc  42489  ralopabb  43373  rexanuz2nf  45408  limsupre2lem  45645  aifftbifffaibif  46836  nfermltl8rev  47616  nfermltl2rev  47617
  Copyright terms: Public domain W3C validator