| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version | ||
| Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.61 404 pm4.52 986 xordi 1018 dfifp6 1068 exanali 1859 2exanali 1860 ceqsralbv 3636 difin0ss 4348 ordsssuc2 6445 tfindsg 7856 findsg 7893 hashfun 14455 isprm5 16726 mdetunilem8 22557 4cycl2vnunb 30271 mxidlirred 33487 axacprim 35724 dfrdg4 35969 andnand1 36419 relowlpssretop 37382 nlpineqsn 37426 poimirlem1 37645 poimir 37677 fimgmcyc 42557 ralopabb 43435 rexanuz2nf 45519 limsupre2lem 45753 aifftbifffaibif 46950 nfermltl8rev 47756 nfermltl2rev 47757 |
| Copyright terms: Public domain | W3C validator |