Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > annim | Structured version Visualization version GIF version |
Description: Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
annim | ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 402 | . 2 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | con2bii 358 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm4.61 405 pm4.52 982 xordi 1014 dfifp6 1066 exanali 1866 2exanali 1867 difin0ss 4308 ordsssuc2 6353 tfindsg 7701 findsg 7740 hashfun 14150 isprm5 16410 mdetunilem8 21766 4cycl2vnunb 28650 axacprim 33644 ceqsralv2 33666 dfrdg4 34249 andnand1 34586 relowlpssretop 35531 nlpineqsn 35575 poimirlem1 35774 poimir 35806 limsupre2lem 43236 aifftbifffaibif 44384 nfermltl8rev 45163 nfermltl2rev 45164 |
Copyright terms: Public domain | W3C validator |