Step | Hyp | Ref
| Expression |
1 | | r19.26 3101 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑)) |
2 | | pm2.24 124 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝜑 → ⊥)) |
3 | 2 | impcom 411 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ 𝜑) → ⊥) |
4 | 3 | ralimi 3092 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) → ∀𝑥 ∈ 𝐴 ⊥) |
5 | | df-ral 3075 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ⊥ ↔
∀𝑥(𝑥 ∈ 𝐴 → ⊥)) |
6 | | dfnot 1557 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 → ⊥)) |
7 | 6 | bicomi 227 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 → ⊥) ↔ ¬ 𝑥 ∈ 𝐴) |
8 | 7 | albii 1821 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
9 | 5, 8 | sylbb 222 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ⊥ →
∀𝑥 ¬ 𝑥 ∈ 𝐴) |
10 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) |
11 | | falim 1555 |
. . . . . . . . . . 11
⊢ (⊥
→ 𝑥 ∈ 𝐴) |
12 | 10, 11 | pm5.21ni 382 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ ⊥)) |
13 | | df-clab 2736 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) |
14 | | sbv 2095 |
. . . . . . . . . . 11
⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) |
15 | 13, 14 | bitri 278 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔
⊥) |
16 | 12, 15 | bitr4di 292 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
17 | 16 | alimi 1813 |
. . . . . . . 8
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
18 | | dfcleq 2751 |
. . . . . . . 8
⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
19 | 17, 18 | sylibr 237 |
. . . . . . 7
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → 𝐴 = {𝑦 ∣ ⊥}) |
20 | | dfnul4 4231 |
. . . . . . 7
⊢ ∅ =
{𝑦 ∣
⊥} |
21 | 19, 20 | eqtr4di 2811 |
. . . . . 6
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → 𝐴 = ∅) |
22 | 4, 9, 21 | 3syl 18 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) → 𝐴 = ∅) |
23 | 1, 22 | sylbir 238 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) |
24 | 23 | ex 416 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ¬ 𝜑 → (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = ∅)) |
25 | | ralf0.1 |
. . . 4
⊢ ¬
𝜑 |
26 | 25 | a1i 11 |
. . 3
⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) |
27 | 24, 26 | mprg 3084 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝜑 → 𝐴 = ∅) |
28 | | rzal 4404 |
. 2
⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
29 | 27, 28 | impbii 212 |
1
⊢
(∀𝑥 ∈
𝐴 𝜑 ↔ 𝐴 = ∅) |