| Step | Hyp | Ref
| Expression |
| 1 | | r19.26 3098 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑)) |
| 2 | | pm2.24 124 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝜑 → ⊥)) |
| 3 | 2 | impcom 407 |
. . . . . . 7
⊢ ((¬
𝜑 ∧ 𝜑) → ⊥) |
| 4 | 3 | ralimi 3073 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) → ∀𝑥 ∈ 𝐴 ⊥) |
| 5 | | df-ral 3052 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ⊥ ↔
∀𝑥(𝑥 ∈ 𝐴 → ⊥)) |
| 6 | | dfnot 1559 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 → ⊥)) |
| 7 | 6 | bicomi 224 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 → ⊥) ↔ ¬ 𝑥 ∈ 𝐴) |
| 8 | 7 | albii 1819 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 9 | 5, 8 | sylbb 219 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ⊥ →
∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| 10 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) |
| 11 | | falim 1557 |
. . . . . . . . . . 11
⊢ (⊥
→ 𝑥 ∈ 𝐴) |
| 12 | 10, 11 | pm5.21ni 377 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 13 | | df-clab 2714 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) |
| 14 | | sbv 2088 |
. . . . . . . . . . 11
⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) |
| 15 | 13, 14 | bitri 275 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔
⊥) |
| 16 | 12, 15 | bitr4di 289 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
| 17 | 16 | alimi 1811 |
. . . . . . . 8
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
| 18 | | dfcleq 2728 |
. . . . . . . 8
⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
| 19 | 17, 18 | sylibr 234 |
. . . . . . 7
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → 𝐴 = {𝑦 ∣ ⊥}) |
| 20 | | dfnul4 4310 |
. . . . . . 7
⊢ ∅ =
{𝑦 ∣
⊥} |
| 21 | 19, 20 | eqtr4di 2788 |
. . . . . 6
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → 𝐴 = ∅) |
| 22 | 4, 9, 21 | 3syl 18 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) → 𝐴 = ∅) |
| 23 | 1, 22 | sylbir 235 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) |
| 24 | 23 | ex 412 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ¬ 𝜑 → (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = ∅)) |
| 25 | | ralf0.1 |
. . . 4
⊢ ¬
𝜑 |
| 26 | 25 | a1i 11 |
. . 3
⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) |
| 27 | 24, 26 | mprg 3057 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝜑 → 𝐴 = ∅) |
| 28 | | rzal 4484 |
. 2
⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| 29 | 27, 28 | impbii 209 |
1
⊢
(∀𝑥 ∈
𝐴 𝜑 ↔ 𝐴 = ∅) |