| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | r19.26 3111 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) ↔ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑)) | 
| 2 |  | pm2.24 124 | . . . . . . . 8
⊢ (𝜑 → (¬ 𝜑 → ⊥)) | 
| 3 | 2 | impcom 407 | . . . . . . 7
⊢ ((¬
𝜑 ∧ 𝜑) → ⊥) | 
| 4 | 3 | ralimi 3083 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) → ∀𝑥 ∈ 𝐴 ⊥) | 
| 5 |  | df-ral 3062 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ⊥ ↔
∀𝑥(𝑥 ∈ 𝐴 → ⊥)) | 
| 6 |  | dfnot 1559 | . . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 → ⊥)) | 
| 7 | 6 | bicomi 224 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 → ⊥) ↔ ¬ 𝑥 ∈ 𝐴) | 
| 8 | 7 | albii 1819 | . . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ⊥) ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | 
| 9 | 5, 8 | sylbb 219 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 ⊥ →
∀𝑥 ¬ 𝑥 ∈ 𝐴) | 
| 10 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | 
| 11 |  | falim 1557 | . . . . . . . . . . 11
⊢ (⊥
→ 𝑥 ∈ 𝐴) | 
| 12 | 10, 11 | pm5.21ni 377 | . . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ ⊥)) | 
| 13 |  | df-clab 2715 | . . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | 
| 14 |  | sbv 2088 | . . . . . . . . . . 11
⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | 
| 15 | 13, 14 | bitri 275 | . . . . . . . . . 10
⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔
⊥) | 
| 16 | 12, 15 | bitr4di 289 | . . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | 
| 17 | 16 | alimi 1811 | . . . . . . . 8
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | 
| 18 |  | dfcleq 2730 | . . . . . . . 8
⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | 
| 19 | 17, 18 | sylibr 234 | . . . . . . 7
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → 𝐴 = {𝑦 ∣ ⊥}) | 
| 20 |  | dfnul4 4335 | . . . . . . 7
⊢ ∅ =
{𝑦 ∣
⊥} | 
| 21 | 19, 20 | eqtr4di 2795 | . . . . . 6
⊢
(∀𝑥 ¬
𝑥 ∈ 𝐴 → 𝐴 = ∅) | 
| 22 | 4, 9, 21 | 3syl 18 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 (¬ 𝜑 ∧ 𝜑) → 𝐴 = ∅) | 
| 23 | 1, 22 | sylbir 235 | . . . 4
⊢
((∀𝑥 ∈
𝐴 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) | 
| 24 | 23 | ex 412 | . . 3
⊢
(∀𝑥 ∈
𝐴 ¬ 𝜑 → (∀𝑥 ∈ 𝐴 𝜑 → 𝐴 = ∅)) | 
| 25 |  | ralf0.1 | . . . 4
⊢  ¬
𝜑 | 
| 26 | 25 | a1i 11 | . . 3
⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) | 
| 27 | 24, 26 | mprg 3067 | . 2
⊢
(∀𝑥 ∈
𝐴 𝜑 → 𝐴 = ∅) | 
| 28 |  | rzal 4509 | . 2
⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | 
| 29 | 27, 28 | impbii 209 | 1
⊢
(∀𝑥 ∈
𝐴 𝜑 ↔ 𝐴 = ∅) |