Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdifflemf Structured version   Visualization version   GIF version

Theorem irrdifflemf 35004
Description: Lemma for irrdiff 35005. The forward direction. (Contributed by Jim Kingdon, 20-May-2024.)
Hypotheses
Ref Expression
irrdifflemf.a (𝜑𝐴 ∈ ℝ)
irrdifflemf.irr (𝜑 → ¬ 𝐴 ∈ ℚ)
irrdifflemf.q (𝜑𝑄 ∈ ℚ)
irrdifflemf.r (𝜑𝑅 ∈ ℚ)
irrdifflemf.qr (𝜑𝑄𝑅)
Assertion
Ref Expression
irrdifflemf (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))

Proof of Theorem irrdifflemf
StepHypRef Expression
1 simplll 775 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
2 simpllr 776 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
3 simplr 769 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
4 simpr 489 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
52, 3, 43eqtr3d 2802 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
6 irrdifflemf.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
76recnd 10692 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
87adantr 485 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝐴 ∈ ℂ)
9 irrdifflemf.q . . . . . . . . . . 11 (𝜑𝑄 ∈ ℚ)
10 qre 12378 . . . . . . . . . . 11 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
119, 10syl 17 . . . . . . . . . 10 (𝜑𝑄 ∈ ℝ)
1211recnd 10692 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
1312adantr 485 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 ∈ ℂ)
14 irrdifflemf.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℚ)
15 qre 12378 . . . . . . . . . . 11 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
1716recnd 10692 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1817adantr 485 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑅 ∈ ℂ)
19 simpr 489 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
208, 13, 18, 19subcand 11061 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 = 𝑅)
21 irrdifflemf.qr . . . . . . . 8 (𝜑𝑄𝑅)
2221adantr 485 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄𝑅)
2320, 22pm2.21ddne 3033 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → ⊥)
241, 5, 23syl2anc 588 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
25 simplll 775 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
26 simpllr 776 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
27 simplr 769 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
28 simpr 489 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
2926, 27, 283eqtr3d 2802 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
30 2cnd 11737 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℂ)
317adantr 485 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℂ)
32 2ne0 11763 . . . . . . . . . 10 2 ≠ 0
3332a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ≠ 0)
34312timesd 11902 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝐴 + 𝐴))
35 simpr 489 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
3617adantr 485 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℂ)
3731, 36negsubdi2d 11036 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → -(𝐴𝑅) = (𝑅𝐴))
3835, 37eqtrd 2794 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = (𝑅𝐴))
3912adantr 485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℂ)
4039, 36, 31, 31addsubeq4d 11071 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) = (𝐴 + 𝐴) ↔ (𝐴𝑄) = (𝑅𝐴)))
4138, 40mpbird 260 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) = (𝐴 + 𝐴))
4234, 41eqtr4d 2797 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝑄 + 𝑅))
4330, 31, 33, 42mvllmuld 11495 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 = ((𝑄 + 𝑅) / 2))
449adantr 485 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℚ)
4514adantr 485 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℚ)
46 qaddcl 12390 . . . . . . . . . 10 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
4744, 45, 46syl2anc 588 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) ∈ ℚ)
48 2z 12038 . . . . . . . . . 10 2 ∈ ℤ
49 zq 12379 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ ℚ)
5048, 49mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℚ)
51 qdivcl 12395 . . . . . . . . 9 (((𝑄 + 𝑅) ∈ ℚ ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5247, 50, 33, 51syl3anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5343, 52eqeltrd 2851 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℚ)
54 irrdifflemf.irr . . . . . . . 8 (𝜑 → ¬ 𝐴 ∈ ℚ)
5554adantr 485 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ¬ 𝐴 ∈ ℚ)
5653, 55pm2.21fal 1561 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ⊥)
5725, 29, 56syl2anc 588 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
586, 16resubcld 11091 . . . . . . 7 (𝜑 → (𝐴𝑅) ∈ ℝ)
5958absord 14808 . . . . . 6 (𝜑 → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6059ad2antrr 726 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6124, 57, 60mpjaodan 957 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ⊥)
62 simplll 775 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
63 simpllr 776 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
64 simplr 769 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
65 simpr 489 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
6663, 64, 653eqtr3rd 2803 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) = -(𝐴𝑄))
6758recnd 10692 . . . . . . . . 9 (𝜑 → (𝐴𝑅) ∈ ℂ)
6867ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
696, 11resubcld 11091 . . . . . . . . . 10 (𝜑 → (𝐴𝑄) ∈ ℝ)
7069recnd 10692 . . . . . . . . 9 (𝜑 → (𝐴𝑄) ∈ ℂ)
7170ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
72 negcon2 10962 . . . . . . . 8 (((𝐴𝑅) ∈ ℂ ∧ (𝐴𝑄) ∈ ℂ) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7368, 71, 72syl2anc 588 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7466, 73mpbid 235 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
7562, 74, 56syl2anc 588 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
76 simplll 775 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
7770ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
7867ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
79 simpllr 776 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
80 simplr 769 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
81 simpr 489 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
8279, 80, 813eqtr3d 2802 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → -(𝐴𝑄) = -(𝐴𝑅))
8377, 78, 82neg11d 11032 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
8476, 83, 23syl2anc 588 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
8559ad2antrr 726 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
8675, 84, 85mpjaodan 957 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ⊥)
8769absord 14808 . . . . 5 (𝜑 → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8887adantr 485 . . . 4 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8961, 86, 88mpjaodan 957 . . 3 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ⊥)
9089ex 417 . 2 (𝜑 → ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
91 df-ne 2950 . . 3 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
92 dfnot 1558 . . 3 (¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9391, 92bitri 278 . 2 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9490, 93sylibr 237 1 (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845   = wceq 1539  wfal 1551  wcel 2112  wne 2949  cfv 6328  (class class class)co 7143  cc 10558  cr 10559  0cc0 10560   + caddc 10563   · cmul 10565  cmin 10893  -cneg 10894   / cdiv 11320  2c2 11714  cz 12005  cq 12373  abscabs 14626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-sup 8924  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-z 12006  df-uz 12268  df-q 12374  df-rp 12416  df-seq 13404  df-exp 13465  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628
This theorem is referenced by:  irrdiff  35005
  Copyright terms: Public domain W3C validator