Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdifflemf Structured version   Visualization version   GIF version

Theorem irrdifflemf 37298
Description: Lemma for irrdiff 37299. The forward direction. (Contributed by Jim Kingdon, 20-May-2024.)
Hypotheses
Ref Expression
irrdifflemf.a (𝜑𝐴 ∈ ℝ)
irrdifflemf.irr (𝜑 → ¬ 𝐴 ∈ ℚ)
irrdifflemf.q (𝜑𝑄 ∈ ℚ)
irrdifflemf.r (𝜑𝑅 ∈ ℚ)
irrdifflemf.qr (𝜑𝑄𝑅)
Assertion
Ref Expression
irrdifflemf (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))

Proof of Theorem irrdifflemf
StepHypRef Expression
1 simplll 774 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
2 simpllr 775 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
3 simplr 768 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
4 simpr 484 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
52, 3, 43eqtr3d 2772 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
6 irrdifflemf.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
76recnd 11162 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
87adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝐴 ∈ ℂ)
9 irrdifflemf.q . . . . . . . . . . 11 (𝜑𝑄 ∈ ℚ)
10 qre 12872 . . . . . . . . . . 11 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
119, 10syl 17 . . . . . . . . . 10 (𝜑𝑄 ∈ ℝ)
1211recnd 11162 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
1312adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 ∈ ℂ)
14 irrdifflemf.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℚ)
15 qre 12872 . . . . . . . . . . 11 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
1716recnd 11162 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1817adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑅 ∈ ℂ)
19 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
208, 13, 18, 19subcand 11534 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 = 𝑅)
21 irrdifflemf.qr . . . . . . . 8 (𝜑𝑄𝑅)
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄𝑅)
2320, 22pm2.21ddne 3009 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → ⊥)
241, 5, 23syl2anc 584 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
25 simplll 774 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
26 simpllr 775 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
27 simplr 768 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
28 simpr 484 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
2926, 27, 283eqtr3d 2772 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
30 2cnd 12224 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℂ)
317adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℂ)
32 2ne0 12250 . . . . . . . . . 10 2 ≠ 0
3332a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ≠ 0)
34312timesd 12385 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝐴 + 𝐴))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
3617adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℂ)
3731, 36negsubdi2d 11509 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → -(𝐴𝑅) = (𝑅𝐴))
3835, 37eqtrd 2764 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = (𝑅𝐴))
3912adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℂ)
4039, 36, 31, 31addsubeq4d 11544 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) = (𝐴 + 𝐴) ↔ (𝐴𝑄) = (𝑅𝐴)))
4138, 40mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) = (𝐴 + 𝐴))
4234, 41eqtr4d 2767 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝑄 + 𝑅))
4330, 31, 33, 42mvllmuld 11974 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 = ((𝑄 + 𝑅) / 2))
449adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℚ)
4514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℚ)
46 qaddcl 12884 . . . . . . . . . 10 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
4744, 45, 46syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) ∈ ℚ)
48 2z 12525 . . . . . . . . . 10 2 ∈ ℤ
49 zq 12873 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ ℚ)
5048, 49mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℚ)
51 qdivcl 12889 . . . . . . . . 9 (((𝑄 + 𝑅) ∈ ℚ ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5247, 50, 33, 51syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5343, 52eqeltrd 2828 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℚ)
54 irrdifflemf.irr . . . . . . . 8 (𝜑 → ¬ 𝐴 ∈ ℚ)
5554adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ¬ 𝐴 ∈ ℚ)
5653, 55pm2.21fal 1562 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ⊥)
5725, 29, 56syl2anc 584 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
586, 16resubcld 11566 . . . . . . 7 (𝜑 → (𝐴𝑅) ∈ ℝ)
5958absord 15341 . . . . . 6 (𝜑 → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6059ad2antrr 726 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6124, 57, 60mpjaodan 960 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ⊥)
62 simplll 774 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
63 simpllr 775 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
64 simplr 768 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
65 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
6663, 64, 653eqtr3rd 2773 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) = -(𝐴𝑄))
6758recnd 11162 . . . . . . . . 9 (𝜑 → (𝐴𝑅) ∈ ℂ)
6867ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
696, 11resubcld 11566 . . . . . . . . . 10 (𝜑 → (𝐴𝑄) ∈ ℝ)
7069recnd 11162 . . . . . . . . 9 (𝜑 → (𝐴𝑄) ∈ ℂ)
7170ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
72 negcon2 11435 . . . . . . . 8 (((𝐴𝑅) ∈ ℂ ∧ (𝐴𝑄) ∈ ℂ) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7368, 71, 72syl2anc 584 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7466, 73mpbid 232 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
7562, 74, 56syl2anc 584 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
76 simplll 774 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
7770ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
7867ad3antrrr 730 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
79 simpllr 775 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
80 simplr 768 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
81 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
8279, 80, 813eqtr3d 2772 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → -(𝐴𝑄) = -(𝐴𝑅))
8377, 78, 82neg11d 11505 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
8476, 83, 23syl2anc 584 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
8559ad2antrr 726 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
8675, 84, 85mpjaodan 960 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ⊥)
8769absord 15341 . . . . 5 (𝜑 → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8887adantr 480 . . . 4 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8961, 86, 88mpjaodan 960 . . 3 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ⊥)
9089ex 412 . 2 (𝜑 → ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
91 df-ne 2926 . . 3 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
92 dfnot 1559 . . 3 (¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9391, 92bitri 275 . 2 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9490, 93sylibr 234 1 (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wfal 1552  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  cz 12489  cq 12867  abscabs 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161
This theorem is referenced by:  irrdiff  37299
  Copyright terms: Public domain W3C validator