Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdifflemf Structured version   Visualization version   GIF version

Theorem irrdifflemf 35796
Description: Lemma for irrdiff 35797. The forward direction. (Contributed by Jim Kingdon, 20-May-2024.)
Hypotheses
Ref Expression
irrdifflemf.a (𝜑𝐴 ∈ ℝ)
irrdifflemf.irr (𝜑 → ¬ 𝐴 ∈ ℚ)
irrdifflemf.q (𝜑𝑄 ∈ ℚ)
irrdifflemf.r (𝜑𝑅 ∈ ℚ)
irrdifflemf.qr (𝜑𝑄𝑅)
Assertion
Ref Expression
irrdifflemf (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))

Proof of Theorem irrdifflemf
StepHypRef Expression
1 simplll 773 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
2 simpllr 774 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
3 simplr 767 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
4 simpr 485 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
52, 3, 43eqtr3d 2784 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
6 irrdifflemf.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
76recnd 11183 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
87adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝐴 ∈ ℂ)
9 irrdifflemf.q . . . . . . . . . . 11 (𝜑𝑄 ∈ ℚ)
10 qre 12878 . . . . . . . . . . 11 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
119, 10syl 17 . . . . . . . . . 10 (𝜑𝑄 ∈ ℝ)
1211recnd 11183 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
1312adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 ∈ ℂ)
14 irrdifflemf.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℚ)
15 qre 12878 . . . . . . . . . . 11 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
1716recnd 11183 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1817adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑅 ∈ ℂ)
19 simpr 485 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
208, 13, 18, 19subcand 11553 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 = 𝑅)
21 irrdifflemf.qr . . . . . . . 8 (𝜑𝑄𝑅)
2221adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄𝑅)
2320, 22pm2.21ddne 3029 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → ⊥)
241, 5, 23syl2anc 584 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
25 simplll 773 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
26 simpllr 774 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
27 simplr 767 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
28 simpr 485 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
2926, 27, 283eqtr3d 2784 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
30 2cnd 12231 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℂ)
317adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℂ)
32 2ne0 12257 . . . . . . . . . 10 2 ≠ 0
3332a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ≠ 0)
34312timesd 12396 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝐴 + 𝐴))
35 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
3617adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℂ)
3731, 36negsubdi2d 11528 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → -(𝐴𝑅) = (𝑅𝐴))
3835, 37eqtrd 2776 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = (𝑅𝐴))
3912adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℂ)
4039, 36, 31, 31addsubeq4d 11563 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) = (𝐴 + 𝐴) ↔ (𝐴𝑄) = (𝑅𝐴)))
4138, 40mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) = (𝐴 + 𝐴))
4234, 41eqtr4d 2779 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝑄 + 𝑅))
4330, 31, 33, 42mvllmuld 11987 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 = ((𝑄 + 𝑅) / 2))
449adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℚ)
4514adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℚ)
46 qaddcl 12890 . . . . . . . . . 10 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
4744, 45, 46syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) ∈ ℚ)
48 2z 12535 . . . . . . . . . 10 2 ∈ ℤ
49 zq 12879 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ ℚ)
5048, 49mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℚ)
51 qdivcl 12895 . . . . . . . . 9 (((𝑄 + 𝑅) ∈ ℚ ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5247, 50, 33, 51syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5343, 52eqeltrd 2838 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℚ)
54 irrdifflemf.irr . . . . . . . 8 (𝜑 → ¬ 𝐴 ∈ ℚ)
5554adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ¬ 𝐴 ∈ ℚ)
5653, 55pm2.21fal 1563 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ⊥)
5725, 29, 56syl2anc 584 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
586, 16resubcld 11583 . . . . . . 7 (𝜑 → (𝐴𝑅) ∈ ℝ)
5958absord 15300 . . . . . 6 (𝜑 → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6059ad2antrr 724 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6124, 57, 60mpjaodan 957 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ⊥)
62 simplll 773 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
63 simpllr 774 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
64 simplr 767 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
65 simpr 485 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
6663, 64, 653eqtr3rd 2785 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) = -(𝐴𝑄))
6758recnd 11183 . . . . . . . . 9 (𝜑 → (𝐴𝑅) ∈ ℂ)
6867ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
696, 11resubcld 11583 . . . . . . . . . 10 (𝜑 → (𝐴𝑄) ∈ ℝ)
7069recnd 11183 . . . . . . . . 9 (𝜑 → (𝐴𝑄) ∈ ℂ)
7170ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
72 negcon2 11454 . . . . . . . 8 (((𝐴𝑅) ∈ ℂ ∧ (𝐴𝑄) ∈ ℂ) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7368, 71, 72syl2anc 584 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7466, 73mpbid 231 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
7562, 74, 56syl2anc 584 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
76 simplll 773 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
7770ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
7867ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
79 simpllr 774 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
80 simplr 767 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
81 simpr 485 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
8279, 80, 813eqtr3d 2784 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → -(𝐴𝑄) = -(𝐴𝑅))
8377, 78, 82neg11d 11524 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
8476, 83, 23syl2anc 584 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
8559ad2antrr 724 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
8675, 84, 85mpjaodan 957 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ⊥)
8769absord 15300 . . . . 5 (𝜑 → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8887adantr 481 . . . 4 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8961, 86, 88mpjaodan 957 . . 3 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ⊥)
9089ex 413 . 2 (𝜑 → ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
91 df-ne 2944 . . 3 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
92 dfnot 1560 . . 3 (¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9391, 92bitri 274 . 2 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9490, 93sylibr 233 1 (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wfal 1553  wcel 2106  wne 2943  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  cz 12499  cq 12873  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  irrdiff  35797
  Copyright terms: Public domain W3C validator