Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdifflemf Structured version   Visualization version   GIF version

Theorem irrdifflemf 36837
Description: Lemma for irrdiff 36838. The forward direction. (Contributed by Jim Kingdon, 20-May-2024.)
Hypotheses
Ref Expression
irrdifflemf.a (𝜑𝐴 ∈ ℝ)
irrdifflemf.irr (𝜑 → ¬ 𝐴 ∈ ℚ)
irrdifflemf.q (𝜑𝑄 ∈ ℚ)
irrdifflemf.r (𝜑𝑅 ∈ ℚ)
irrdifflemf.qr (𝜑𝑄𝑅)
Assertion
Ref Expression
irrdifflemf (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))

Proof of Theorem irrdifflemf
StepHypRef Expression
1 simplll 773 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
2 simpllr 774 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
3 simplr 767 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
4 simpr 483 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
52, 3, 43eqtr3d 2776 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
6 irrdifflemf.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
76recnd 11280 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
87adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝐴 ∈ ℂ)
9 irrdifflemf.q . . . . . . . . . . 11 (𝜑𝑄 ∈ ℚ)
10 qre 12975 . . . . . . . . . . 11 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
119, 10syl 17 . . . . . . . . . 10 (𝜑𝑄 ∈ ℝ)
1211recnd 11280 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
1312adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 ∈ ℂ)
14 irrdifflemf.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℚ)
15 qre 12975 . . . . . . . . . . 11 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
1716recnd 11280 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1817adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑅 ∈ ℂ)
19 simpr 483 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
208, 13, 18, 19subcand 11650 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 = 𝑅)
21 irrdifflemf.qr . . . . . . . 8 (𝜑𝑄𝑅)
2221adantr 479 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄𝑅)
2320, 22pm2.21ddne 3023 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → ⊥)
241, 5, 23syl2anc 582 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
25 simplll 773 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
26 simpllr 774 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
27 simplr 767 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
28 simpr 483 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
2926, 27, 283eqtr3d 2776 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
30 2cnd 12328 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℂ)
317adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℂ)
32 2ne0 12354 . . . . . . . . . 10 2 ≠ 0
3332a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ≠ 0)
34312timesd 12493 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝐴 + 𝐴))
35 simpr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
3617adantr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℂ)
3731, 36negsubdi2d 11625 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → -(𝐴𝑅) = (𝑅𝐴))
3835, 37eqtrd 2768 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = (𝑅𝐴))
3912adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℂ)
4039, 36, 31, 31addsubeq4d 11660 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) = (𝐴 + 𝐴) ↔ (𝐴𝑄) = (𝑅𝐴)))
4138, 40mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) = (𝐴 + 𝐴))
4234, 41eqtr4d 2771 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝑄 + 𝑅))
4330, 31, 33, 42mvllmuld 12084 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 = ((𝑄 + 𝑅) / 2))
449adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℚ)
4514adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℚ)
46 qaddcl 12987 . . . . . . . . . 10 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
4744, 45, 46syl2anc 582 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) ∈ ℚ)
48 2z 12632 . . . . . . . . . 10 2 ∈ ℤ
49 zq 12976 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ ℚ)
5048, 49mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℚ)
51 qdivcl 12992 . . . . . . . . 9 (((𝑄 + 𝑅) ∈ ℚ ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5247, 50, 33, 51syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5343, 52eqeltrd 2829 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℚ)
54 irrdifflemf.irr . . . . . . . 8 (𝜑 → ¬ 𝐴 ∈ ℚ)
5554adantr 479 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ¬ 𝐴 ∈ ℚ)
5653, 55pm2.21fal 1555 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ⊥)
5725, 29, 56syl2anc 582 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
586, 16resubcld 11680 . . . . . . 7 (𝜑 → (𝐴𝑅) ∈ ℝ)
5958absord 15402 . . . . . 6 (𝜑 → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6059ad2antrr 724 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6124, 57, 60mpjaodan 956 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ⊥)
62 simplll 773 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
63 simpllr 774 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
64 simplr 767 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
65 simpr 483 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
6663, 64, 653eqtr3rd 2777 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) = -(𝐴𝑄))
6758recnd 11280 . . . . . . . . 9 (𝜑 → (𝐴𝑅) ∈ ℂ)
6867ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
696, 11resubcld 11680 . . . . . . . . . 10 (𝜑 → (𝐴𝑄) ∈ ℝ)
7069recnd 11280 . . . . . . . . 9 (𝜑 → (𝐴𝑄) ∈ ℂ)
7170ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
72 negcon2 11551 . . . . . . . 8 (((𝐴𝑅) ∈ ℂ ∧ (𝐴𝑄) ∈ ℂ) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7368, 71, 72syl2anc 582 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7466, 73mpbid 231 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
7562, 74, 56syl2anc 582 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
76 simplll 773 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
7770ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
7867ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
79 simpllr 774 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
80 simplr 767 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
81 simpr 483 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
8279, 80, 813eqtr3d 2776 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → -(𝐴𝑄) = -(𝐴𝑅))
8377, 78, 82neg11d 11621 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
8476, 83, 23syl2anc 582 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
8559ad2antrr 724 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
8675, 84, 85mpjaodan 956 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ⊥)
8769absord 15402 . . . . 5 (𝜑 → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8887adantr 479 . . . 4 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8961, 86, 88mpjaodan 956 . . 3 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ⊥)
9089ex 411 . 2 (𝜑 → ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
91 df-ne 2938 . . 3 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
92 dfnot 1552 . . 3 (¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9391, 92bitri 274 . 2 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9490, 93sylibr 233 1 (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wfal 1545  wcel 2098  wne 2937  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146   + caddc 11149   · cmul 11151  cmin 11482  -cneg 11483   / cdiv 11909  2c2 12305  cz 12596  cq 12970  abscabs 15221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223
This theorem is referenced by:  irrdiff  36838
  Copyright terms: Public domain W3C validator