Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdifflemf Structured version   Visualization version   GIF version

Theorem irrdifflemf 37291
Description: Lemma for irrdiff 37292. The forward direction. (Contributed by Jim Kingdon, 20-May-2024.)
Hypotheses
Ref Expression
irrdifflemf.a (𝜑𝐴 ∈ ℝ)
irrdifflemf.irr (𝜑 → ¬ 𝐴 ∈ ℚ)
irrdifflemf.q (𝜑𝑄 ∈ ℚ)
irrdifflemf.r (𝜑𝑅 ∈ ℚ)
irrdifflemf.qr (𝜑𝑄𝑅)
Assertion
Ref Expression
irrdifflemf (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))

Proof of Theorem irrdifflemf
StepHypRef Expression
1 simplll 774 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
2 simpllr 775 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
3 simplr 768 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
4 simpr 484 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
52, 3, 43eqtr3d 2788 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
6 irrdifflemf.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
76recnd 11318 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
87adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝐴 ∈ ℂ)
9 irrdifflemf.q . . . . . . . . . . 11 (𝜑𝑄 ∈ ℚ)
10 qre 13018 . . . . . . . . . . 11 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
119, 10syl 17 . . . . . . . . . 10 (𝜑𝑄 ∈ ℝ)
1211recnd 11318 . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
1312adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 ∈ ℂ)
14 irrdifflemf.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℚ)
15 qre 13018 . . . . . . . . . . 11 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
1614, 15syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
1716recnd 11318 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
1817adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑅 ∈ ℂ)
19 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
208, 13, 18, 19subcand 11688 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄 = 𝑅)
21 irrdifflemf.qr . . . . . . . 8 (𝜑𝑄𝑅)
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → 𝑄𝑅)
2320, 22pm2.21ddne 3032 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = (𝐴𝑅)) → ⊥)
241, 5, 23syl2anc 583 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
25 simplll 774 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
26 simpllr 775 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
27 simplr 768 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
28 simpr 484 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
2926, 27, 283eqtr3d 2788 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
30 2cnd 12371 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℂ)
317adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℂ)
32 2ne0 12397 . . . . . . . . . 10 2 ≠ 0
3332a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ≠ 0)
34312timesd 12536 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝐴 + 𝐴))
35 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
3617adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℂ)
3731, 36negsubdi2d 11663 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → -(𝐴𝑅) = (𝑅𝐴))
3835, 37eqtrd 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝐴𝑄) = (𝑅𝐴))
3912adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℂ)
4039, 36, 31, 31addsubeq4d 11698 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) = (𝐴 + 𝐴) ↔ (𝐴𝑄) = (𝑅𝐴)))
4138, 40mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) = (𝐴 + 𝐴))
4234, 41eqtr4d 2783 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (2 · 𝐴) = (𝑄 + 𝑅))
4330, 31, 33, 42mvllmuld 12126 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 = ((𝑄 + 𝑅) / 2))
449adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑄 ∈ ℚ)
4514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝑅 ∈ ℚ)
46 qaddcl 13030 . . . . . . . . . 10 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
4744, 45, 46syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → (𝑄 + 𝑅) ∈ ℚ)
48 2z 12675 . . . . . . . . . 10 2 ∈ ℤ
49 zq 13019 . . . . . . . . . 10 (2 ∈ ℤ → 2 ∈ ℚ)
5048, 49mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 2 ∈ ℚ)
51 qdivcl 13035 . . . . . . . . 9 (((𝑄 + 𝑅) ∈ ℚ ∧ 2 ∈ ℚ ∧ 2 ≠ 0) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5247, 50, 33, 51syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ((𝑄 + 𝑅) / 2) ∈ ℚ)
5343, 52eqeltrd 2844 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → 𝐴 ∈ ℚ)
54 irrdifflemf.irr . . . . . . . 8 (𝜑 → ¬ 𝐴 ∈ ℚ)
5554adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ¬ 𝐴 ∈ ℚ)
5653, 55pm2.21fal 1559 . . . . . 6 ((𝜑 ∧ (𝐴𝑄) = -(𝐴𝑅)) → ⊥)
5725, 29, 56syl2anc 583 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
586, 16resubcld 11718 . . . . . . 7 (𝜑 → (𝐴𝑅) ∈ ℝ)
5958absord 15464 . . . . . 6 (𝜑 → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6059ad2antrr 725 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
6124, 57, 60mpjaodan 959 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = (𝐴𝑄)) → ⊥)
62 simplll 774 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → 𝜑)
63 simpllr 775 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
64 simplr 768 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
65 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (abs‘(𝐴𝑅)) = (𝐴𝑅))
6663, 64, 653eqtr3rd 2789 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) = -(𝐴𝑄))
6758recnd 11318 . . . . . . . . 9 (𝜑 → (𝐴𝑅) ∈ ℂ)
6867ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
696, 11resubcld 11718 . . . . . . . . . 10 (𝜑 → (𝐴𝑄) ∈ ℝ)
7069recnd 11318 . . . . . . . . 9 (𝜑 → (𝐴𝑄) ∈ ℂ)
7170ad3antrrr 729 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
72 negcon2 11589 . . . . . . . 8 (((𝐴𝑅) ∈ ℂ ∧ (𝐴𝑄) ∈ ℂ) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7368, 71, 72syl2anc 583 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ((𝐴𝑅) = -(𝐴𝑄) ↔ (𝐴𝑄) = -(𝐴𝑅)))
7466, 73mpbid 232 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → (𝐴𝑄) = -(𝐴𝑅))
7562, 74, 56syl2anc 583 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = (𝐴𝑅)) → ⊥)
76 simplll 774 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → 𝜑)
7770ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) ∈ ℂ)
7867ad3antrrr 729 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑅) ∈ ℂ)
79 simpllr 775 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
80 simplr 768 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑄)) = -(𝐴𝑄))
81 simpr 484 . . . . . . . 8 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (abs‘(𝐴𝑅)) = -(𝐴𝑅))
8279, 80, 813eqtr3d 2788 . . . . . . 7 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → -(𝐴𝑄) = -(𝐴𝑅))
8377, 78, 82neg11d 11659 . . . . . 6 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → (𝐴𝑄) = (𝐴𝑅))
8476, 83, 23syl2anc 583 . . . . 5 ((((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) ∧ (abs‘(𝐴𝑅)) = -(𝐴𝑅)) → ⊥)
8559ad2antrr 725 . . . . 5 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ((abs‘(𝐴𝑅)) = (𝐴𝑅) ∨ (abs‘(𝐴𝑅)) = -(𝐴𝑅)))
8675, 84, 85mpjaodan 959 . . . 4 (((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) ∧ (abs‘(𝐴𝑄)) = -(𝐴𝑄)) → ⊥)
8769absord 15464 . . . . 5 (𝜑 → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8887adantr 480 . . . 4 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ((abs‘(𝐴𝑄)) = (𝐴𝑄) ∨ (abs‘(𝐴𝑄)) = -(𝐴𝑄)))
8961, 86, 88mpjaodan 959 . . 3 ((𝜑 ∧ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅))) → ⊥)
9089ex 412 . 2 (𝜑 → ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
91 df-ne 2947 . . 3 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)))
92 dfnot 1556 . . 3 (¬ (abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9391, 92bitri 275 . 2 ((abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)) ↔ ((abs‘(𝐴𝑄)) = (abs‘(𝐴𝑅)) → ⊥))
9490, 93sylibr 234 1 (𝜑 → (abs‘(𝐴𝑄)) ≠ (abs‘(𝐴𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wfal 1549  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  cz 12639  cq 13013  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  irrdiff  37292
  Copyright terms: Public domain W3C validator