Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd2i Structured version   Visualization version   GIF version

Theorem dfvd2i 43937
Description: Inference form of dfvd2 43931. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd2i.1 (   𝜑   ,   𝜓   ▶   𝜒   )
Assertion
Ref Expression
dfvd2i (𝜑 → (𝜓𝜒))

Proof of Theorem dfvd2i
StepHypRef Expression
1 dfvd2i.1 . 2 (   𝜑   ,   𝜓   ▶   𝜒   )
2 dfvd2 43931 . 2 ((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ (𝜑 → (𝜓𝜒)))
31, 2mpbi 229 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 43929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-vd2 43930
This theorem is referenced by:  vd23  43954  in2  43957  in2an  43960  gen21  43971  gen21nv  43972  gen22  43974  exinst  43976  exinst01  43977  exinst11  43978  e2  43983  e222  43988  e233  44117  e323  44118
  Copyright terms: Public domain W3C validator