Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd2ir | Structured version Visualization version GIF version |
Description: Right-to-left inference form of dfvd2 42199. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfvd2ir.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
dfvd2ir | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfvd2ir.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | dfvd2 42199 | . 2 ⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 42197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-vd2 42198 |
This theorem is referenced by: vd02 42218 vd12 42220 in2an 42228 in3 42229 idn2 42233 gen21 42239 gen21nv 42240 gen22 42242 e2 42251 e222 42256 |
Copyright terms: Public domain | W3C validator |