MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2i Structured version   Visualization version   GIF version

Theorem orim2i 910
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (𝜑𝜓)
Assertion
Ref Expression
orim2i ((𝜒𝜑) → (𝜒𝜓))

Proof of Theorem orim2i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 orim1i.1 . 2 (𝜑𝜓)
31, 2orim12i 908 1 ((𝜒𝜑) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 847
This theorem is referenced by:  orbi2i  912  pm1.5  919  pm2.3  924  r19.44v  3194  elpwunsn  4688  elsuci  6432  infxpenlem  10008  fin1a2lem12  10406  fin1a2  10410  entri3  10554  zindd  12663  elfzr  13745  hashnn0pnf  14302  limccnp  25408  tgldimor  27784  ex-natded5.7-2  29696  chirredi  31678  meran1  35344  dissym1  35354  ordtoplem  35368  ordcmp  35380  poimirlem31  36567  simpcntrab  45634  setc2othin  47724
  Copyright terms: Public domain W3C validator