![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | orim12i 908 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: orbi2i 912 pm1.5 919 pm2.3 924 r19.44v 3192 elpwunsn 4689 elsuci 6453 infxpenlem 10051 fin1a2lem12 10449 fin1a2 10453 entri3 10597 zindd 12717 elfzr 13816 hashnn0pnf 14378 limccnp 25941 tgldimor 28525 ex-natded5.7-2 30441 chirredi 32423 meran1 36394 dissym1 36404 ordtoplem 36418 ordcmp 36430 poimirlem31 37638 simpcntrab 46826 setc2othin 48857 |
Copyright terms: Public domain | W3C validator |