| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | orim12i 908 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi2i 912 pm1.5 919 pm2.3 924 r19.44v 3180 elpwunsn 4665 elsuci 6426 infxpenlem 10032 fin1a2lem12 10430 fin1a2 10434 entri3 10578 zindd 12699 elfzr 13801 hashnn0pnf 14365 limccnp 25849 tgldimor 28486 ex-natded5.7-2 30398 chirredi 32380 meran1 36434 dissym1 36444 ordtoplem 36458 ordcmp 36470 poimirlem31 37680 simpcntrab 46879 setc2othin 49332 |
| Copyright terms: Public domain | W3C validator |