| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | orim12i 908 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi2i 912 pm1.5 919 pm2.3 924 r19.44v 3172 elpwunsn 4648 elsuci 6401 infxpenlem 9966 fin1a2lem12 10364 fin1a2 10368 entri3 10512 zindd 12635 elfzr 13741 hashnn0pnf 14307 limccnp 25792 tgldimor 28429 ex-natded5.7-2 30341 chirredi 32323 meran1 36399 dissym1 36409 ordtoplem 36423 ordcmp 36435 poimirlem31 37645 simpcntrab 46868 setc2othin 49455 |
| Copyright terms: Public domain | W3C validator |