Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | orim12i 906 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: orbi2i 910 pm1.5 917 pm2.3 922 r19.44v 3281 elpwunsn 4619 elsuci 6332 infxpenlem 9769 fin1a2lem12 10167 fin1a2 10171 entri3 10315 zindd 12421 elfzr 13500 hashnn0pnf 14056 limccnp 25055 tgldimor 26863 ex-natded5.7-2 28776 chirredi 30756 meran1 34600 dissym1 34610 ordtoplem 34624 ordcmp 34636 poimirlem31 35808 simpcntrab 44386 setc2othin 46337 |
Copyright terms: Public domain | W3C validator |