MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2i Structured version   Visualization version   GIF version

Theorem orim2i 910
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (𝜑𝜓)
Assertion
Ref Expression
orim2i ((𝜒𝜑) → (𝜒𝜓))

Proof of Theorem orim2i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 orim1i.1 . 2 (𝜑𝜓)
31, 2orim12i 908 1 ((𝜒𝜑) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orbi2i  912  pm1.5  919  pm2.3  924  r19.44v  3192  elpwunsn  4689  elsuci  6453  infxpenlem  10051  fin1a2lem12  10449  fin1a2  10453  entri3  10597  zindd  12717  elfzr  13816  hashnn0pnf  14378  limccnp  25941  tgldimor  28525  ex-natded5.7-2  30441  chirredi  32423  meran1  36394  dissym1  36404  ordtoplem  36418  ordcmp  36430  poimirlem31  37638  simpcntrab  46826  setc2othin  48857
  Copyright terms: Public domain W3C validator