MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2i Structured version   Visualization version   GIF version

Theorem orim2i 907
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (𝜑𝜓)
Assertion
Ref Expression
orim2i ((𝜒𝜑) → (𝜒𝜓))

Proof of Theorem orim2i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 orim1i.1 . 2 (𝜑𝜓)
31, 2orim12i 905 1 ((𝜒𝜑) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  orbi2i  909  pm1.5  916  pm2.3  921  r19.44v  3278  elpwunsn  4616  elsuci  6317  infxpenlem  9700  fin1a2lem12  10098  fin1a2  10102  entri3  10246  zindd  12351  elfzr  13428  hashnn0pnf  13984  limccnp  24960  tgldimor  26767  ex-natded5.7-2  28677  chirredi  30657  meran1  34527  dissym1  34537  ordtoplem  34551  ordcmp  34563  poimirlem31  35735  simpcntrab  44273  setc2othin  46225
  Copyright terms: Public domain W3C validator