![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | orim12i 907 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: orbi2i 911 pm1.5 918 pm2.3 923 r19.44v 3200 elpwunsn 4707 elsuci 6462 infxpenlem 10082 fin1a2lem12 10480 fin1a2 10484 entri3 10628 zindd 12744 elfzr 13830 hashnn0pnf 14391 limccnp 25946 tgldimor 28528 ex-natded5.7-2 30444 chirredi 32426 meran1 36377 dissym1 36387 ordtoplem 36401 ordcmp 36413 poimirlem31 37611 simpcntrab 46791 setc2othin 48723 |
Copyright terms: Public domain | W3C validator |