MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2i Structured version   Visualization version   GIF version

Theorem orim2i 910
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (𝜑𝜓)
Assertion
Ref Expression
orim2i ((𝜒𝜑) → (𝜒𝜓))

Proof of Theorem orim2i
StepHypRef Expression
1 id 22 . 2 (𝜒𝜒)
2 orim1i.1 . 2 (𝜑𝜓)
31, 2orim12i 908 1 ((𝜒𝜑) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orbi2i  912  pm1.5  919  pm2.3  924  r19.44v  3164  elpwunsn  4638  elsuci  6380  infxpenlem  9926  fin1a2lem12  10324  fin1a2  10328  entri3  10472  zindd  12595  elfzr  13701  hashnn0pnf  14267  limccnp  25808  tgldimor  28465  ex-natded5.7-2  30374  chirredi  32356  meran1  36384  dissym1  36394  ordtoplem  36408  ordcmp  36420  poimirlem31  37630  simpcntrab  46852  setc2othin  49452
  Copyright terms: Public domain W3C validator