Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | orim12i 905 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orbi2i 909 pm1.5 916 pm2.3 921 r19.44v 3278 elpwunsn 4616 elsuci 6317 infxpenlem 9700 fin1a2lem12 10098 fin1a2 10102 entri3 10246 zindd 12351 elfzr 13428 hashnn0pnf 13984 limccnp 24960 tgldimor 26767 ex-natded5.7-2 28677 chirredi 30657 meran1 34527 dissym1 34537 ordtoplem 34551 ordcmp 34563 poimirlem31 35735 simpcntrab 44273 setc2othin 46225 |
Copyright terms: Public domain | W3C validator |