| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | orim12i 908 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi2i 912 pm1.5 919 pm2.3 924 r19.44v 3164 elpwunsn 4638 elsuci 6380 infxpenlem 9926 fin1a2lem12 10324 fin1a2 10328 entri3 10472 zindd 12595 elfzr 13701 hashnn0pnf 14267 limccnp 25808 tgldimor 28465 ex-natded5.7-2 30374 chirredi 32356 meran1 36384 dissym1 36394 ordtoplem 36408 ordcmp 36420 poimirlem31 37630 simpcntrab 46852 setc2othin 49452 |
| Copyright terms: Public domain | W3C validator |