| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | orim12i 908 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi2i 912 pm1.5 919 pm2.3 924 r19.44v 3168 elpwunsn 4636 elsuci 6380 infxpenlem 9911 fin1a2lem12 10309 fin1a2 10313 entri3 10457 zindd 12580 elfzr 13683 hashnn0pnf 14251 limccnp 25820 tgldimor 28481 ex-natded5.7-2 30394 chirredi 32376 meran1 36476 dissym1 36486 ordtoplem 36500 ordcmp 36512 poimirlem31 37711 simpcntrab 46992 setc2othin 49591 |
| Copyright terms: Public domain | W3C validator |