| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orim2i | Structured version Visualization version GIF version | ||
| Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| orim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| orim2i | ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | orim12i 908 | 1 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orbi2i 912 pm1.5 919 pm2.3 924 r19.44v 3181 elpwunsn 4664 elsuci 6431 infxpenlem 10035 fin1a2lem12 10433 fin1a2 10437 entri3 10581 zindd 12702 elfzr 13801 hashnn0pnf 14364 limccnp 25863 tgldimor 28447 ex-natded5.7-2 30360 chirredi 32342 meran1 36387 dissym1 36397 ordtoplem 36411 ordcmp 36423 poimirlem31 37633 simpcntrab 46857 setc2othin 49165 |
| Copyright terms: Public domain | W3C validator |