Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalaw Structured version   Visualization version   GIF version

Theorem dalaw 39905
Description: Desargues's law, derived from Desargues's theorem dath 39755 and with no conditions on the atoms. If triples 𝑃, 𝑄, 𝑅 and 𝑆, 𝑇, 𝑈 are centrally perspective, i.e., ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
dalaw.l = (le‘𝐾)
dalaw.j = (join‘𝐾)
dalaw.m = (meet‘𝐾)
dalaw.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalaw ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))

Proof of Theorem dalaw
StepHypRef Expression
1 dalaw.l . . . . . . . . 9 = (le‘𝐾)
2 dalaw.j . . . . . . . . 9 = (join‘𝐾)
3 dalaw.m . . . . . . . . 9 = (meet‘𝐾)
4 dalaw.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
5 eqid 2735 . . . . . . . . 9 (LPlanes‘𝐾) = (LPlanes‘𝐾)
61, 2, 3, 4, 5dalawlem14 39903 . . . . . . . 8 (((𝐾 ∈ HL ∧ ¬ (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
763expib 1122 . . . . . . 7 ((𝐾 ∈ HL ∧ ¬ (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
873exp 1119 . . . . . 6 (𝐾 ∈ HL → (¬ (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
91, 2, 3, 4, 5dalawlem15 39904 . . . . . . . 8 (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
1093expib 1122 . . . . . . 7 ((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
11103exp 1119 . . . . . 6 (𝐾 ∈ HL → (¬ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
12 simp11 1204 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
13 simp2 1137 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃𝐴𝑄𝐴𝑅𝐴))
14 simp3 1138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆𝐴𝑇𝐴𝑈𝐴))
15 simp2ll 1241 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
16153ad2ant1 1133 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
17 simp2rl 1243 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → ((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾))
18173ad2ant1 1133 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾))
19 simp2lr 1242 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)))
20193ad2ant1 1133 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)))
21 simp2rr 1244 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))
22213ad2ant1 1133 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))
23 simp13 1206 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
241, 2, 3, 4, 5dalawlem1 39890 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ ((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾)) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
2512, 13, 14, 16, 18, 20, 22, 23, 24syl323anc 1402 . . . . . . . 8 (((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
26253expib 1122 . . . . . . 7 ((𝐾 ∈ HL ∧ ((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
27263exp 1119 . . . . . 6 (𝐾 ∈ HL → (((((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ (((𝑆 𝑇) 𝑈) ∈ (LPlanes‘𝐾) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)))) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
288, 11, 27ecased 1035 . . . . 5 (𝐾 ∈ HL → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))))
2928exp4a 431 . . . 4 (𝐾 ∈ HL → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑃𝐴𝑄𝐴𝑅𝐴) → ((𝑆𝐴𝑇𝐴𝑈𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
3029com34 91 . . 3 (𝐾 ∈ HL → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑆𝐴𝑇𝐴𝑈𝐴) → ((𝑃𝐴𝑄𝐴𝑅𝐴) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
3130com24 95 . 2 (𝐾 ∈ HL → ((𝑃𝐴𝑄𝐴𝑅𝐴) → ((𝑆𝐴𝑇𝐴𝑈𝐴) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
32313imp 1110 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  lecple 17278  joincjn 18323  meetcmee 18324  Atomscatm 39281  HLchlt 39368  LPlanesclpl 39511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-psubsp 39522  df-pmap 39523  df-padd 39815
This theorem is referenced by:  cdleme14  40292  cdleme20f  40333  cdlemg9  40653  cdlemg12c  40664  cdlemk6  40856  cdlemk6u  40881
  Copyright terms: Public domain W3C validator