MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplitioo Structured version   Visualization version   GIF version

Theorem itgsplitioo 25764
Description: The integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgsplitioo.1 (𝜑𝐴 ∈ ℝ)
itgsplitioo.2 (𝜑𝐶 ∈ ℝ)
itgsplitioo.3 (𝜑𝐵 ∈ (𝐴[,]𝐶))
itgsplitioo.4 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
itgsplitioo.5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
itgsplitioo.6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
itgsplitioo (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem itgsplitioo
StepHypRef Expression
1 itgsplitioo.3 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐶))
2 itgsplitioo.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 itgsplitioo.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
4 elicc2 13308 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
52, 3, 4syl2anc 584 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
61, 5mpbid 232 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶))
76simp2d 1143 . . . . 5 (𝜑𝐴𝐵)
86simp1d 1142 . . . . . 6 (𝜑𝐵 ∈ ℝ)
92, 8leloed 11253 . . . . 5 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
107, 9mpbid 232 . . . 4 (𝜑 → (𝐴 < 𝐵𝐴 = 𝐵))
1110ord 864 . . 3 (𝜑 → (¬ 𝐴 < 𝐵𝐴 = 𝐵))
122rexrd 11159 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
13 iooss1 13277 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1412, 7, 13syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1514sselda 3934 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴(,)𝐶))
16 itgsplitioo.4 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
1715, 16syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐷 ∈ ℂ)
18 itgsplitioo.6 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
1917, 18itgcl 25710 . . . . . 6 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 ∈ ℂ)
2019addlidd 11311 . . . . 5 (𝜑 → (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2120eqcomd 2737 . . . 4 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
22 oveq1 7353 . . . . . 6 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
23 itgeq1 25699 . . . . . 6 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2422, 23syl 17 . . . . 5 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
25 oveq1 7353 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵))
26 iooid 13270 . . . . . . . . 9 (𝐵(,)𝐵) = ∅
2725, 26eqtrdi 2782 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅)
28 itgeq1 25699 . . . . . . . 8 ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
2927, 28syl 17 . . . . . . 7 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
30 itg0 25706 . . . . . . 7 ∫∅𝐷 d𝑥 = 0
3129, 30eqtrdi 2782 . . . . . 6 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = 0)
3231oveq1d 7361 . . . . 5 (𝐴 = 𝐵 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
3324, 32eqeq12d 2747 . . . 4 (𝐴 = 𝐵 → (∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) ↔ ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3421, 33syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3511, 34syld 47 . 2 (𝜑 → (¬ 𝐴 < 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
366simp3d 1144 . . . . 5 (𝜑𝐵𝐶)
378, 3leloed 11253 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3836, 37mpbid 232 . . . 4 (𝜑 → (𝐵 < 𝐶𝐵 = 𝐶))
3938ord 864 . . 3 (𝜑 → (¬ 𝐵 < 𝐶𝐵 = 𝐶))
403rexrd 11159 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
41 iooss2 13278 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4240, 36, 41syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4342sselda 3934 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐶))
4443, 16syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℂ)
45 itgsplitioo.5 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
4644, 45itgcl 25710 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 ∈ ℂ)
4746addridd 11310 . . . . 5 (𝜑 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = ∫(𝐴(,)𝐵)𝐷 d𝑥)
4847eqcomd 2737 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0))
49 oveq2 7354 . . . . . 6 (𝐵 = 𝐶 → (𝐴(,)𝐵) = (𝐴(,)𝐶))
50 itgeq1 25699 . . . . . 6 ((𝐴(,)𝐵) = (𝐴(,)𝐶) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
5149, 50syl 17 . . . . 5 (𝐵 = 𝐶 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
52 oveq2 7354 . . . . . . . . 9 (𝐵 = 𝐶 → (𝐵(,)𝐵) = (𝐵(,)𝐶))
5326, 52eqtr3id 2780 . . . . . . . 8 (𝐵 = 𝐶 → ∅ = (𝐵(,)𝐶))
54 itgeq1 25699 . . . . . . . 8 (∅ = (𝐵(,)𝐶) → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5553, 54syl 17 . . . . . . 7 (𝐵 = 𝐶 → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5630, 55eqtr3id 2780 . . . . . 6 (𝐵 = 𝐶 → 0 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5756oveq2d 7362 . . . . 5 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
5851, 57eqeq12d 2747 . . . 4 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) ↔ ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
5948, 58syl5ibcom 245 . . 3 (𝜑 → (𝐵 = 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
6039, 59syld 47 . 2 (𝜑 → (¬ 𝐵 < 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
61 indir 4236 . . . . . . . 8 (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶)))
628rexrd 11159 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
6312, 62jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6463adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6562, 40jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
6665adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
678adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
6867leidd 11680 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
69 ioodisj 13379 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) ∧ 𝐵𝐵) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
7064, 66, 68, 69syl21anc 837 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
71 incom 4159 . . . . . . . . . . 11 ({𝐵} ∩ (𝐵(,)𝐶)) = ((𝐵(,)𝐶) ∩ {𝐵})
7267ltnrd 11244 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐵)
73 eliooord 13302 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐵𝐵 < 𝐶))
7473simpld 494 . . . . . . . . . . . . 13 (𝐵 ∈ (𝐵(,)𝐶) → 𝐵 < 𝐵)
7572, 74nsyl 140 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 ∈ (𝐵(,)𝐶))
76 disjsn 4664 . . . . . . . . . . . 12 (((𝐵(,)𝐶) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐵(,)𝐶))
7775, 76sylibr 234 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐵(,)𝐶) ∩ {𝐵}) = ∅)
7871, 77eqtrid 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ({𝐵} ∩ (𝐵(,)𝐶)) = ∅)
7970, 78uneq12d 4119 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = (∅ ∪ ∅))
80 un0 4344 . . . . . . . . 9 (∅ ∪ ∅) = ∅
8179, 80eqtrdi 2782 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = ∅)
8261, 81eqtrid 2778 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = ∅)
8382fveq2d 6826 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = (vol*‘∅))
84 ovol0 25419 . . . . . 6 (vol*‘∅) = 0
8583, 84eqtrdi 2782 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = 0)
8612, 62, 403jca 1128 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
87 ioojoin 13380 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8886, 87sylan 580 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8988eqcomd 2737 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐶) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)))
9016adantlr 715 . . . . 5 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
9145adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
92 ssun1 4128 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵})
9392a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵}))
94 ioossre 13304 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
9594a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ℝ)
9667snssd 4761 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ℝ)
9795, 96unssd 4142 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
98 uncom 4108 . . . . . . . . . . . 12 ((𝐴(,)𝐵) ∪ {𝐵}) = ({𝐵} ∪ (𝐴(,)𝐵))
9998difeq1i 4072 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵))
100 difun2 4431 . . . . . . . . . . 11 (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
10199, 100eqtri 2754 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
102 difss 4086 . . . . . . . . . 10 ({𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
103101, 102eqsstri 3981 . . . . . . . . 9 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
104 ovolsn 25421 . . . . . . . . . 10 (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0)
10567, 104syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘{𝐵}) = 0)
106 ovolssnul 25413 . . . . . . . . 9 (((((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵} ∧ {𝐵} ⊆ ℝ ∧ (vol*‘{𝐵}) = 0) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
107103, 96, 105, 106mp3an2i 1468 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
108 ssun1 4128 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶))
109108, 88sseqtrid 3977 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (𝐴(,)𝐶))
110109sselda 3934 . . . . . . . . 9 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝑥 ∈ (𝐴(,)𝐶))
111110, 90syldan 591 . . . . . . . 8 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝐷 ∈ ℂ)
11293, 97, 107, 111itgss3 25741 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥))
113112simpld 494 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1))
11491, 113mpbid 232 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1)
11518adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
11685, 89, 90, 114, 115itgsplit 25762 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
117112simprd 495 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥)
118117oveq1d 7361 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
119116, 118eqtr4d 2769 . . 3 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
120119ex 412 . 2 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
12135, 60, 120ecased 1035 1 (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003   + caddc 11006  *cxr 11142   < clt 11143  cle 11144  (,)cioo 13242  [,]cicc 13245  vol*covol 25388  𝐿1cibl 25543  citg 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-symdif 4203  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-rest 17323  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-top 22807  df-topon 22824  df-bases 22859  df-cmp 23300  df-ovol 25390  df-vol 25391  df-mbf 25545  df-itg1 25546  df-itg2 25547  df-ibl 25548  df-itg 25549  df-0p 25596
This theorem is referenced by:  ditgsplitlem  25786  ftc1lem1  25967  ftc1anc  37740  fourierdlem103  46246  fourierdlem104  46247  fourierdlem111  46254  sqwvfoura  46265  sqwvfourb  46266
  Copyright terms: Public domain W3C validator