MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplitioo Structured version   Visualization version   GIF version

Theorem itgsplitioo 24907
Description: The integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgsplitioo.1 (𝜑𝐴 ∈ ℝ)
itgsplitioo.2 (𝜑𝐶 ∈ ℝ)
itgsplitioo.3 (𝜑𝐵 ∈ (𝐴[,]𝐶))
itgsplitioo.4 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
itgsplitioo.5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
itgsplitioo.6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
itgsplitioo (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem itgsplitioo
StepHypRef Expression
1 itgsplitioo.3 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐶))
2 itgsplitioo.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 itgsplitioo.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
4 elicc2 13073 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
52, 3, 4syl2anc 583 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
61, 5mpbid 231 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶))
76simp2d 1141 . . . . 5 (𝜑𝐴𝐵)
86simp1d 1140 . . . . . 6 (𝜑𝐵 ∈ ℝ)
92, 8leloed 11048 . . . . 5 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
107, 9mpbid 231 . . . 4 (𝜑 → (𝐴 < 𝐵𝐴 = 𝐵))
1110ord 860 . . 3 (𝜑 → (¬ 𝐴 < 𝐵𝐴 = 𝐵))
122rexrd 10956 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
13 iooss1 13043 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1412, 7, 13syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1514sselda 3917 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴(,)𝐶))
16 itgsplitioo.4 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
1715, 16syldan 590 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐷 ∈ ℂ)
18 itgsplitioo.6 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
1917, 18itgcl 24853 . . . . . 6 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 ∈ ℂ)
2019addid2d 11106 . . . . 5 (𝜑 → (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2120eqcomd 2744 . . . 4 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
22 oveq1 7262 . . . . . 6 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
23 itgeq1 24842 . . . . . 6 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2422, 23syl 17 . . . . 5 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
25 oveq1 7262 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵))
26 iooid 13036 . . . . . . . . 9 (𝐵(,)𝐵) = ∅
2725, 26eqtrdi 2795 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅)
28 itgeq1 24842 . . . . . . . 8 ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
2927, 28syl 17 . . . . . . 7 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
30 itg0 24849 . . . . . . 7 ∫∅𝐷 d𝑥 = 0
3129, 30eqtrdi 2795 . . . . . 6 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = 0)
3231oveq1d 7270 . . . . 5 (𝐴 = 𝐵 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
3324, 32eqeq12d 2754 . . . 4 (𝐴 = 𝐵 → (∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) ↔ ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3421, 33syl5ibrcom 246 . . 3 (𝜑 → (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3511, 34syld 47 . 2 (𝜑 → (¬ 𝐴 < 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
366simp3d 1142 . . . . 5 (𝜑𝐵𝐶)
378, 3leloed 11048 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3836, 37mpbid 231 . . . 4 (𝜑 → (𝐵 < 𝐶𝐵 = 𝐶))
3938ord 860 . . 3 (𝜑 → (¬ 𝐵 < 𝐶𝐵 = 𝐶))
403rexrd 10956 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
41 iooss2 13044 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4240, 36, 41syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4342sselda 3917 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐶))
4443, 16syldan 590 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℂ)
45 itgsplitioo.5 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
4644, 45itgcl 24853 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 ∈ ℂ)
4746addid1d 11105 . . . . 5 (𝜑 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = ∫(𝐴(,)𝐵)𝐷 d𝑥)
4847eqcomd 2744 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0))
49 oveq2 7263 . . . . . 6 (𝐵 = 𝐶 → (𝐴(,)𝐵) = (𝐴(,)𝐶))
50 itgeq1 24842 . . . . . 6 ((𝐴(,)𝐵) = (𝐴(,)𝐶) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
5149, 50syl 17 . . . . 5 (𝐵 = 𝐶 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
52 oveq2 7263 . . . . . . . . 9 (𝐵 = 𝐶 → (𝐵(,)𝐵) = (𝐵(,)𝐶))
5326, 52eqtr3id 2793 . . . . . . . 8 (𝐵 = 𝐶 → ∅ = (𝐵(,)𝐶))
54 itgeq1 24842 . . . . . . . 8 (∅ = (𝐵(,)𝐶) → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5553, 54syl 17 . . . . . . 7 (𝐵 = 𝐶 → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5630, 55eqtr3id 2793 . . . . . 6 (𝐵 = 𝐶 → 0 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5756oveq2d 7271 . . . . 5 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
5851, 57eqeq12d 2754 . . . 4 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) ↔ ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
5948, 58syl5ibcom 244 . . 3 (𝜑 → (𝐵 = 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
6039, 59syld 47 . 2 (𝜑 → (¬ 𝐵 < 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
61 indir 4206 . . . . . . . 8 (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶)))
628rexrd 10956 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
6312, 62jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6463adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6562, 40jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
6665adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
678adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
6867leidd 11471 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
69 ioodisj 13143 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) ∧ 𝐵𝐵) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
7064, 66, 68, 69syl21anc 834 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
71 incom 4131 . . . . . . . . . . 11 ({𝐵} ∩ (𝐵(,)𝐶)) = ((𝐵(,)𝐶) ∩ {𝐵})
7267ltnrd 11039 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐵)
73 eliooord 13067 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐵𝐵 < 𝐶))
7473simpld 494 . . . . . . . . . . . . 13 (𝐵 ∈ (𝐵(,)𝐶) → 𝐵 < 𝐵)
7572, 74nsyl 140 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 ∈ (𝐵(,)𝐶))
76 disjsn 4644 . . . . . . . . . . . 12 (((𝐵(,)𝐶) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐵(,)𝐶))
7775, 76sylibr 233 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐵(,)𝐶) ∩ {𝐵}) = ∅)
7871, 77syl5eq 2791 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ({𝐵} ∩ (𝐵(,)𝐶)) = ∅)
7970, 78uneq12d 4094 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = (∅ ∪ ∅))
80 un0 4321 . . . . . . . . 9 (∅ ∪ ∅) = ∅
8179, 80eqtrdi 2795 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = ∅)
8261, 81syl5eq 2791 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = ∅)
8382fveq2d 6760 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = (vol*‘∅))
84 ovol0 24562 . . . . . 6 (vol*‘∅) = 0
8583, 84eqtrdi 2795 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = 0)
8612, 62, 403jca 1126 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
87 ioojoin 13144 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8886, 87sylan 579 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8988eqcomd 2744 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐶) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)))
9016adantlr 711 . . . . 5 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
9145adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
92 ssun1 4102 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵})
9392a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵}))
94 ioossre 13069 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
9594a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ℝ)
9667snssd 4739 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ℝ)
9795, 96unssd 4116 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
98 uncom 4083 . . . . . . . . . . . 12 ((𝐴(,)𝐵) ∪ {𝐵}) = ({𝐵} ∪ (𝐴(,)𝐵))
9998difeq1i 4049 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵))
100 difun2 4411 . . . . . . . . . . 11 (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
10199, 100eqtri 2766 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
102 difss 4062 . . . . . . . . . 10 ({𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
103101, 102eqsstri 3951 . . . . . . . . 9 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
104 ovolsn 24564 . . . . . . . . . 10 (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0)
10567, 104syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘{𝐵}) = 0)
106 ovolssnul 24556 . . . . . . . . 9 (((((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵} ∧ {𝐵} ⊆ ℝ ∧ (vol*‘{𝐵}) = 0) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
107103, 96, 105, 106mp3an2i 1464 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
108 ssun1 4102 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶))
109108, 88sseqtrid 3969 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (𝐴(,)𝐶))
110109sselda 3917 . . . . . . . . 9 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝑥 ∈ (𝐴(,)𝐶))
111110, 90syldan 590 . . . . . . . 8 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝐷 ∈ ℂ)
11293, 97, 107, 111itgss3 24884 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥))
113112simpld 494 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1))
11491, 113mpbid 231 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1)
11518adantr 480 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
11685, 89, 90, 114, 115itgsplit 24905 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
117112simprd 495 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥)
118117oveq1d 7270 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
119116, 118eqtr4d 2781 . . 3 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
120119ex 412 . 2 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
12135, 60, 120ecased 1031 1 (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008  [,]cicc 13011  vol*covol 24531  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739
This theorem is referenced by:  ditgsplitlem  24929  ftc1lem1  25104  ftc1anc  35785  fourierdlem103  43640  fourierdlem104  43641  fourierdlem111  43648  sqwvfoura  43659  sqwvfourb  43660
  Copyright terms: Public domain W3C validator