MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplitioo Structured version   Visualization version   GIF version

Theorem itgsplitioo 25002
Description: The integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgsplitioo.1 (𝜑𝐴 ∈ ℝ)
itgsplitioo.2 (𝜑𝐶 ∈ ℝ)
itgsplitioo.3 (𝜑𝐵 ∈ (𝐴[,]𝐶))
itgsplitioo.4 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
itgsplitioo.5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
itgsplitioo.6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
itgsplitioo (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem itgsplitioo
StepHypRef Expression
1 itgsplitioo.3 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐶))
2 itgsplitioo.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 itgsplitioo.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
4 elicc2 13144 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
52, 3, 4syl2anc 584 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
61, 5mpbid 231 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶))
76simp2d 1142 . . . . 5 (𝜑𝐴𝐵)
86simp1d 1141 . . . . . 6 (𝜑𝐵 ∈ ℝ)
92, 8leloed 11118 . . . . 5 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
107, 9mpbid 231 . . . 4 (𝜑 → (𝐴 < 𝐵𝐴 = 𝐵))
1110ord 861 . . 3 (𝜑 → (¬ 𝐴 < 𝐵𝐴 = 𝐵))
122rexrd 11025 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
13 iooss1 13114 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1412, 7, 13syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1514sselda 3921 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴(,)𝐶))
16 itgsplitioo.4 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
1715, 16syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐷 ∈ ℂ)
18 itgsplitioo.6 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
1917, 18itgcl 24948 . . . . . 6 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 ∈ ℂ)
2019addid2d 11176 . . . . 5 (𝜑 → (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2120eqcomd 2744 . . . 4 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
22 oveq1 7282 . . . . . 6 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
23 itgeq1 24937 . . . . . 6 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2422, 23syl 17 . . . . 5 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
25 oveq1 7282 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵))
26 iooid 13107 . . . . . . . . 9 (𝐵(,)𝐵) = ∅
2725, 26eqtrdi 2794 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅)
28 itgeq1 24937 . . . . . . . 8 ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
2927, 28syl 17 . . . . . . 7 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
30 itg0 24944 . . . . . . 7 ∫∅𝐷 d𝑥 = 0
3129, 30eqtrdi 2794 . . . . . 6 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = 0)
3231oveq1d 7290 . . . . 5 (𝐴 = 𝐵 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
3324, 32eqeq12d 2754 . . . 4 (𝐴 = 𝐵 → (∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) ↔ ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3421, 33syl5ibrcom 246 . . 3 (𝜑 → (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3511, 34syld 47 . 2 (𝜑 → (¬ 𝐴 < 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
366simp3d 1143 . . . . 5 (𝜑𝐵𝐶)
378, 3leloed 11118 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3836, 37mpbid 231 . . . 4 (𝜑 → (𝐵 < 𝐶𝐵 = 𝐶))
3938ord 861 . . 3 (𝜑 → (¬ 𝐵 < 𝐶𝐵 = 𝐶))
403rexrd 11025 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
41 iooss2 13115 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4240, 36, 41syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4342sselda 3921 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐶))
4443, 16syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℂ)
45 itgsplitioo.5 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
4644, 45itgcl 24948 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 ∈ ℂ)
4746addid1d 11175 . . . . 5 (𝜑 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = ∫(𝐴(,)𝐵)𝐷 d𝑥)
4847eqcomd 2744 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0))
49 oveq2 7283 . . . . . 6 (𝐵 = 𝐶 → (𝐴(,)𝐵) = (𝐴(,)𝐶))
50 itgeq1 24937 . . . . . 6 ((𝐴(,)𝐵) = (𝐴(,)𝐶) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
5149, 50syl 17 . . . . 5 (𝐵 = 𝐶 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
52 oveq2 7283 . . . . . . . . 9 (𝐵 = 𝐶 → (𝐵(,)𝐵) = (𝐵(,)𝐶))
5326, 52eqtr3id 2792 . . . . . . . 8 (𝐵 = 𝐶 → ∅ = (𝐵(,)𝐶))
54 itgeq1 24937 . . . . . . . 8 (∅ = (𝐵(,)𝐶) → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5553, 54syl 17 . . . . . . 7 (𝐵 = 𝐶 → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5630, 55eqtr3id 2792 . . . . . 6 (𝐵 = 𝐶 → 0 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5756oveq2d 7291 . . . . 5 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
5851, 57eqeq12d 2754 . . . 4 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) ↔ ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
5948, 58syl5ibcom 244 . . 3 (𝜑 → (𝐵 = 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
6039, 59syld 47 . 2 (𝜑 → (¬ 𝐵 < 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
61 indir 4209 . . . . . . . 8 (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶)))
628rexrd 11025 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
6312, 62jca 512 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6463adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6562, 40jca 512 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
6665adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
678adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
6867leidd 11541 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
69 ioodisj 13214 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) ∧ 𝐵𝐵) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
7064, 66, 68, 69syl21anc 835 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
71 incom 4135 . . . . . . . . . . 11 ({𝐵} ∩ (𝐵(,)𝐶)) = ((𝐵(,)𝐶) ∩ {𝐵})
7267ltnrd 11109 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐵)
73 eliooord 13138 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐵𝐵 < 𝐶))
7473simpld 495 . . . . . . . . . . . . 13 (𝐵 ∈ (𝐵(,)𝐶) → 𝐵 < 𝐵)
7572, 74nsyl 140 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 ∈ (𝐵(,)𝐶))
76 disjsn 4647 . . . . . . . . . . . 12 (((𝐵(,)𝐶) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐵(,)𝐶))
7775, 76sylibr 233 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐵(,)𝐶) ∩ {𝐵}) = ∅)
7871, 77eqtrid 2790 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ({𝐵} ∩ (𝐵(,)𝐶)) = ∅)
7970, 78uneq12d 4098 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = (∅ ∪ ∅))
80 un0 4324 . . . . . . . . 9 (∅ ∪ ∅) = ∅
8179, 80eqtrdi 2794 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = ∅)
8261, 81eqtrid 2790 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = ∅)
8382fveq2d 6778 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = (vol*‘∅))
84 ovol0 24657 . . . . . 6 (vol*‘∅) = 0
8583, 84eqtrdi 2794 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = 0)
8612, 62, 403jca 1127 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
87 ioojoin 13215 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8886, 87sylan 580 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8988eqcomd 2744 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐶) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)))
9016adantlr 712 . . . . 5 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
9145adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
92 ssun1 4106 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵})
9392a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵}))
94 ioossre 13140 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
9594a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ℝ)
9667snssd 4742 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ℝ)
9795, 96unssd 4120 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
98 uncom 4087 . . . . . . . . . . . 12 ((𝐴(,)𝐵) ∪ {𝐵}) = ({𝐵} ∪ (𝐴(,)𝐵))
9998difeq1i 4053 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵))
100 difun2 4414 . . . . . . . . . . 11 (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
10199, 100eqtri 2766 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
102 difss 4066 . . . . . . . . . 10 ({𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
103101, 102eqsstri 3955 . . . . . . . . 9 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
104 ovolsn 24659 . . . . . . . . . 10 (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0)
10567, 104syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘{𝐵}) = 0)
106 ovolssnul 24651 . . . . . . . . 9 (((((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵} ∧ {𝐵} ⊆ ℝ ∧ (vol*‘{𝐵}) = 0) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
107103, 96, 105, 106mp3an2i 1465 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
108 ssun1 4106 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶))
109108, 88sseqtrid 3973 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (𝐴(,)𝐶))
110109sselda 3921 . . . . . . . . 9 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝑥 ∈ (𝐴(,)𝐶))
111110, 90syldan 591 . . . . . . . 8 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝐷 ∈ ℂ)
11293, 97, 107, 111itgss3 24979 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥))
113112simpld 495 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1))
11491, 113mpbid 231 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1)
11518adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
11685, 89, 90, 114, 115itgsplit 25000 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
117112simprd 496 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥)
118117oveq1d 7290 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
119116, 118eqtr4d 2781 . . 3 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
120119ex 413 . 2 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
12135, 60, 120ecased 1032 1 (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  (,)cioo 13079  [,]cicc 13082  vol*covol 24626  𝐿1cibl 24781  citg 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834
This theorem is referenced by:  ditgsplitlem  25024  ftc1lem1  25199  ftc1anc  35858  fourierdlem103  43750  fourierdlem104  43751  fourierdlem111  43758  sqwvfoura  43769  sqwvfourb  43770
  Copyright terms: Public domain W3C validator