MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rolle Structured version   Visualization version   GIF version

Theorem rolle 25901
Description: Rolle's theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), and 𝐹(𝐴) = 𝐹(𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 = 0. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a (𝜑𝐴 ∈ ℝ)
rolle.b (𝜑𝐵 ∈ ℝ)
rolle.lt (𝜑𝐴 < 𝐵)
rolle.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
rolle.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
rolle.e (𝜑 → (𝐹𝐴) = (𝐹𝐵))
Assertion
Ref Expression
rolle (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐵   𝑥,𝐹

Proof of Theorem rolle
Dummy variables 𝑢 𝑡 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rolle.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 rolle.b . . . 4 (𝜑𝐵 ∈ ℝ)
3 rolle.lt . . . . 5 (𝜑𝐴 < 𝐵)
41, 2, 3ltled 11329 . . . 4 (𝜑𝐴𝐵)
5 rolle.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
61, 2, 4, 5evthicc 25367 . . 3 (𝜑 → (∃𝑢 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∃𝑣 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)))
7 reeanv 3210 . . 3 (∃𝑢 ∈ (𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)) ↔ (∃𝑢 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∃𝑣 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)))
86, 7sylibr 234 . 2 (𝜑 → ∃𝑢 ∈ (𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)))
9 r19.26 3092 . . . 4 (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)))
101ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐴 ∈ ℝ)
112ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐵 ∈ ℝ)
123ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐴 < 𝐵)
135ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
14 rolle.d . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
1514ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
16 simpl 482 . . . . . . . . . . 11 (((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → (𝐹𝑦) ≤ (𝐹𝑢))
1716ralimi 3067 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢))
18 fveq2 6861 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
1918breq1d 5120 . . . . . . . . . . 11 (𝑦 = 𝑡 → ((𝐹𝑦) ≤ (𝐹𝑢) ↔ (𝐹𝑡) ≤ (𝐹𝑢)))
2019cbvralvw 3216 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹𝑡) ≤ (𝐹𝑢))
2117, 20sylib 218 . . . . . . . . 9 (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹𝑡) ≤ (𝐹𝑢))
2221ad2antrl 728 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹𝑡) ≤ (𝐹𝑢))
23 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝑢 ∈ (𝐴[,]𝐵))
24 simprr 772 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ¬ 𝑢 ∈ {𝐴, 𝐵})
2510, 11, 12, 13, 15, 22, 23, 24rollelem 25900 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
2625expr 456 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → (¬ 𝑢 ∈ {𝐴, 𝐵} → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
271ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐴 ∈ ℝ)
282ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐵 ∈ ℝ)
293ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐴 < 𝐵)
30 cncff 24793 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
315, 30syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
3231ffvelcdmda 7059 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → (𝐹𝑢) ∈ ℝ)
3332renegcld 11612 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → -(𝐹𝑢) ∈ ℝ)
3433fmpttd 7090 . . . . . . . . . . 11 (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)):(𝐴[,]𝐵)⟶ℝ)
35 ax-resscn 11132 . . . . . . . . . . . 12 ℝ ⊆ ℂ
36 ssid 3972 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
37 cncfss 24799 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
3835, 36, 37mp2an 692 . . . . . . . . . . . . . 14 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
3938, 5sselid 3947 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
40 eqid 2730 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) = (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))
4140negfcncf 24824 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
4239, 41syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
43 cncfcdm 24798 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)):(𝐴[,]𝐵)⟶ℝ))
4435, 42, 43sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)):(𝐴[,]𝐵)⟶ℝ))
4534, 44mpbird 257 . . . . . . . . . 10 (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4645ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4735a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ⊆ ℂ)
48 iccssre 13397 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
491, 2, 48syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
50 fss 6707 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5131, 35, 50sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
5251ffvelcdmda 7059 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → (𝐹𝑢) ∈ ℂ)
5352negcld 11527 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → -(𝐹𝑢) ∈ ℂ)
54 tgioo4 24700 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
55 eqid 2730 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
56 iccntr 24717 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
571, 2, 56syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5847, 49, 53, 54, 55, 57dvmptntr 25882 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑢))))
59 reelprrecn 11167 . . . . . . . . . . . . . . 15 ℝ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ {ℝ, ℂ})
61 ioossicc 13401 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
6261sseli 3945 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ (𝐴[,]𝐵))
6362, 52sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑢) ∈ ℂ)
64 fvexd 6876 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑢) ∈ V)
6531feqmptd 6932 . . . . . . . . . . . . . . . 16 (𝜑𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑢)))
6665oveq2d 7406 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑢))))
67 dvf 25815 . . . . . . . . . . . . . . . . 17 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
6814feq2d 6675 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
6967, 68mpbii 233 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
7069feqmptd 6932 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹) = (𝑢 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑢)))
7147, 49, 52, 54, 55, 57dvmptntr 25882 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑢))) = (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑢))))
7266, 70, 713eqtr3rd 2774 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑢)))
7360, 63, 64, 72dvmptneg 25877 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)))
7458, 73eqtrd 2765 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)))
7574dmeqd 5872 . . . . . . . . . . 11 (𝜑 → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = dom (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)))
76 dmmptg 6218 . . . . . . . . . . . 12 (∀𝑢 ∈ (𝐴(,)𝐵)-((ℝ D 𝐹)‘𝑢) ∈ V → dom (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝐴(,)𝐵))
77 negex 11426 . . . . . . . . . . . . 13 -((ℝ D 𝐹)‘𝑢) ∈ V
7877a1i 11 . . . . . . . . . . . 12 (𝑢 ∈ (𝐴(,)𝐵) → -((ℝ D 𝐹)‘𝑢) ∈ V)
7976, 78mprg 3051 . . . . . . . . . . 11 dom (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝐴(,)𝐵)
8075, 79eqtrdi 2781 . . . . . . . . . 10 (𝜑 → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = (𝐴(,)𝐵))
8180ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = (𝐴(,)𝐵))
82 simpr 484 . . . . . . . . . . . . . 14 (((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → (𝐹𝑣) ≤ (𝐹𝑦))
8331ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
84 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑣 ∈ (𝐴[,]𝐵))
8583, 84ffvelcdmd 7060 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑣) ∈ ℝ)
8631adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
8786ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ℝ)
8885, 87lenegd 11764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹𝑣) ≤ (𝐹𝑦) ↔ -(𝐹𝑦) ≤ -(𝐹𝑣)))
89 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑦 → (𝐹𝑢) = (𝐹𝑦))
9089negeqd 11422 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑦 → -(𝐹𝑢) = -(𝐹𝑦))
91 negex 11426 . . . . . . . . . . . . . . . . . 18 -(𝐹𝑦) ∈ V
9290, 40, 91fvmpt 6971 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴[,]𝐵) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) = -(𝐹𝑦))
9392adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) = -(𝐹𝑦))
94 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑣 → (𝐹𝑢) = (𝐹𝑣))
9594negeqd 11422 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑣 → -(𝐹𝑢) = -(𝐹𝑣))
96 negex 11426 . . . . . . . . . . . . . . . . . 18 -(𝐹𝑣) ∈ V
9795, 40, 96fvmpt 6971 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (𝐴[,]𝐵) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) = -(𝐹𝑣))
9884, 97syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) = -(𝐹𝑣))
9993, 98breq12d 5123 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) ↔ -(𝐹𝑦) ≤ -(𝐹𝑣)))
10088, 99bitr4d 282 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹𝑣) ≤ (𝐹𝑦) ↔ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣)))
10182, 100imbitrid 244 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣)))
102101ralimdva 3146 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∀𝑦 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣)))
103102imp 406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ∀𝑦 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣))
104 fveq2 6861 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) = ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡))
105104breq1d 5120 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) ↔ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣)))
106105cbvralvw 3216 . . . . . . . . . . 11 (∀𝑦 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣))
107103, 106sylib 218 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣))
108107adantrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣))
109 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝑣 ∈ (𝐴[,]𝐵))
110 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ¬ 𝑣 ∈ {𝐴, 𝐵})
11127, 28, 29, 46, 81, 108, 109, 110rollelem 25900 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0)
11274fveq1d 6863 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = ((𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))‘𝑥))
113 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → ((ℝ D 𝐹)‘𝑢) = ((ℝ D 𝐹)‘𝑥))
114113negeqd 11422 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → -((ℝ D 𝐹)‘𝑢) = -((ℝ D 𝐹)‘𝑥))
115 eqid 2730 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))
116 negex 11426 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑥) ∈ V
117114, 115, 116fvmpt 6971 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
118112, 117sylan9eq 2785 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
119118eqeq1d 2732 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0 ↔ -((ℝ D 𝐹)‘𝑥) = 0))
12014eleq2d 2815 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ dom (ℝ D 𝐹) ↔ 𝑥 ∈ (𝐴(,)𝐵)))
121120biimpar 477 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ dom (ℝ D 𝐹))
12267ffvelcdmi 7058 . . . . . . . . . . . . 13 (𝑥 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
123121, 122syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
124123negeq0d 11532 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) = 0 ↔ -((ℝ D 𝐹)‘𝑥) = 0))
125119, 124bitr4d 282 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0 ↔ ((ℝ D 𝐹)‘𝑥) = 0))
126125rexbidva 3156 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
127126ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
128111, 127mpbid 232 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
129128expr 456 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → (¬ 𝑣 ∈ {𝐴, 𝐵} → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
130 vex 3454 . . . . . . . . . . 11 𝑢 ∈ V
131130elpr 4617 . . . . . . . . . 10 (𝑢 ∈ {𝐴, 𝐵} ↔ (𝑢 = 𝐴𝑢 = 𝐵))
132 fveq2 6861 . . . . . . . . . . . 12 (𝑢 = 𝐴 → (𝐹𝑢) = (𝐹𝐴))
133132a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑢 = 𝐴 → (𝐹𝑢) = (𝐹𝐴)))
134 rolle.e . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐴) = (𝐹𝐵))
135134eqcomd 2736 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐵) = (𝐹𝐴))
136 fveqeq2 6870 . . . . . . . . . . . 12 (𝑢 = 𝐵 → ((𝐹𝑢) = (𝐹𝐴) ↔ (𝐹𝐵) = (𝐹𝐴)))
137135, 136syl5ibrcom 247 . . . . . . . . . . 11 (𝜑 → (𝑢 = 𝐵 → (𝐹𝑢) = (𝐹𝐴)))
138133, 137jaod 859 . . . . . . . . . 10 (𝜑 → ((𝑢 = 𝐴𝑢 = 𝐵) → (𝐹𝑢) = (𝐹𝐴)))
139131, 138biimtrid 242 . . . . . . . . 9 (𝜑 → (𝑢 ∈ {𝐴, 𝐵} → (𝐹𝑢) = (𝐹𝐴)))
140 eleq1w 2812 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑢 ∈ {𝐴, 𝐵} ↔ 𝑣 ∈ {𝐴, 𝐵}))
141 fveqeq2 6870 . . . . . . . . . . . 12 (𝑢 = 𝑣 → ((𝐹𝑢) = (𝐹𝐴) ↔ (𝐹𝑣) = (𝐹𝐴)))
142140, 141imbi12d 344 . . . . . . . . . . 11 (𝑢 = 𝑣 → ((𝑢 ∈ {𝐴, 𝐵} → (𝐹𝑢) = (𝐹𝐴)) ↔ (𝑣 ∈ {𝐴, 𝐵} → (𝐹𝑣) = (𝐹𝐴))))
143142imbi2d 340 . . . . . . . . . 10 (𝑢 = 𝑣 → ((𝜑 → (𝑢 ∈ {𝐴, 𝐵} → (𝐹𝑢) = (𝐹𝐴))) ↔ (𝜑 → (𝑣 ∈ {𝐴, 𝐵} → (𝐹𝑣) = (𝐹𝐴)))))
144143, 139chvarvv 1989 . . . . . . . . 9 (𝜑 → (𝑣 ∈ {𝐴, 𝐵} → (𝐹𝑣) = (𝐹𝐴)))
145139, 144anim12d 609 . . . . . . . 8 (𝜑 → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))))
146145ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))))
1471rexrd 11231 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
1482rexrd 11231 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
149 lbicc2 13432 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
150147, 148, 4, 149syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ (𝐴[,]𝐵))
15131, 150ffvelcdmd 7060 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝐴) ∈ ℝ)
152151ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ ℝ)
15387, 152letri3d 11323 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝐴) ∧ (𝐹𝐴) ≤ (𝐹𝑦))))
154 breq2 5114 . . . . . . . . . . . . . . 15 ((𝐹𝑢) = (𝐹𝐴) → ((𝐹𝑦) ≤ (𝐹𝑢) ↔ (𝐹𝑦) ≤ (𝐹𝐴)))
155 breq1 5113 . . . . . . . . . . . . . . 15 ((𝐹𝑣) = (𝐹𝐴) → ((𝐹𝑣) ≤ (𝐹𝑦) ↔ (𝐹𝐴) ≤ (𝐹𝑦)))
156154, 155bi2anan9 638 . . . . . . . . . . . . . 14 (((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴)) → (((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ↔ ((𝐹𝑦) ≤ (𝐹𝐴) ∧ (𝐹𝐴) ≤ (𝐹𝑦))))
157156bibi2d 342 . . . . . . . . . . . . 13 (((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴)) → (((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) ↔ ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝐴) ∧ (𝐹𝐴) ≤ (𝐹𝑦)))))
158153, 157syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴)) → ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)))))
159158impancom 451 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) → (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)))))
160159imp 406 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))))
161160ralbidva 3155 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))))
16231ffnd 6692 . . . . . . . . . . . . 13 (𝜑𝐹 Fn (𝐴[,]𝐵))
163 fnconstg 6751 . . . . . . . . . . . . . 14 ((𝐹𝐴) ∈ ℝ → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
164151, 163syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
165 eqfnfv 7006 . . . . . . . . . . . . 13 ((𝐹 Fn (𝐴[,]𝐵) ∧ ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵)) → (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦)))
166162, 164, 165syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦)))
167 fvex 6874 . . . . . . . . . . . . . . 15 (𝐹𝐴) ∈ V
168167fvconst2 7181 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦) = (𝐹𝐴))
169168eqeq2d 2741 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹𝑦) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦) ↔ (𝐹𝑦) = (𝐹𝐴)))
170169ralbiia 3074 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴))
171166, 170bitrdi 287 . . . . . . . . . . 11 (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴)))
172 ioon0 13339 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵))
173147, 148, 172syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵))
1743, 173mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
175 fconstmpt 5703 . . . . . . . . . . . . . . . . . . . 20 ((𝐴[,]𝐵) × {(𝐹𝐴)}) = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴))
176175eqeq2i 2743 . . . . . . . . . . . . . . . . . . 19 (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) ↔ 𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴)))
177176biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) → 𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴)))
178177oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) → (ℝ D 𝐹) = (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴))))
179151recnd 11209 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹𝐴) ∈ ℂ)
180179adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ℝ) → (𝐹𝐴) ∈ ℂ)
181 0cnd 11174 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ℝ) → 0 ∈ ℂ)
18260, 179dvmptc 25869 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D (𝑢 ∈ ℝ ↦ (𝐹𝐴))) = (𝑢 ∈ ℝ ↦ 0))
18360, 180, 181, 182, 49, 54, 55, 57dvmptres2 25873 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0))
184178, 183sylan9eqr 2787 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) → (ℝ D 𝐹) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0))
185184fveq1d 6863 . . . . . . . . . . . . . . 15 ((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) → ((ℝ D 𝐹)‘𝑥) = ((𝑢 ∈ (𝐴(,)𝐵) ↦ 0)‘𝑥))
186 eqidd 2731 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → 0 = 0)
187 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝐴(,)𝐵) ↦ 0) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0)
188 c0ex 11175 . . . . . . . . . . . . . . . 16 0 ∈ V
189186, 187, 188fvmpt 6971 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑢 ∈ (𝐴(,)𝐵) ↦ 0)‘𝑥) = 0)
190185, 189sylan9eq 2785 . . . . . . . . . . . . . 14 (((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) = 0)
191190ralrimiva 3126 . . . . . . . . . . . . 13 ((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) → ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
192 r19.2z 4461 . . . . . . . . . . . . 13 (((𝐴(,)𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
193174, 191, 192syl2an2r 685 . . . . . . . . . . . 12 ((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
194193ex 412 . . . . . . . . . . 11 (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
195171, 194sylbird 260 . . . . . . . . . 10 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
196195ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
197161, 196sylbird 260 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
198197impancom 451 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → (((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
199146, 198syld 47 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
20026, 129, 199ecased 1035 . . . . 5 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
201200ex 412 . . . 4 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
2029, 201biimtrrid 243 . . 3 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → ((∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
203202rexlimdvva 3195 . 2 (𝜑 → (∃𝑢 ∈ (𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
2048, 203mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  {csn 4592  {cpr 4594   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  *cxr 11214   < clt 11215  cle 11216  -cneg 11413  (,)cioo 13313  [,]cicc 13316  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  intcnt 22911  cnccncf 24776   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  cmvth  25902  cmvthOLD  25903  lhop1lem  25925
  Copyright terms: Public domain W3C validator