MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rolle Structured version   Visualization version   GIF version

Theorem rolle 25163
Description: Rolle's theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), and 𝐹(𝐴) = 𝐹(𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 = 0. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a (𝜑𝐴 ∈ ℝ)
rolle.b (𝜑𝐵 ∈ ℝ)
rolle.lt (𝜑𝐴 < 𝐵)
rolle.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
rolle.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
rolle.e (𝜑 → (𝐹𝐴) = (𝐹𝐵))
Assertion
Ref Expression
rolle (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐵   𝑥,𝐹

Proof of Theorem rolle
Dummy variables 𝑢 𝑡 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rolle.a . . . 4 (𝜑𝐴 ∈ ℝ)
2 rolle.b . . . 4 (𝜑𝐵 ∈ ℝ)
3 rolle.lt . . . . 5 (𝜑𝐴 < 𝐵)
41, 2, 3ltled 11132 . . . 4 (𝜑𝐴𝐵)
5 rolle.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
61, 2, 4, 5evthicc 24632 . . 3 (𝜑 → (∃𝑢 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∃𝑣 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)))
7 reeanv 3295 . . 3 (∃𝑢 ∈ (𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)) ↔ (∃𝑢 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∃𝑣 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)))
86, 7sylibr 233 . 2 (𝜑 → ∃𝑢 ∈ (𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)))
9 r19.26 3096 . . . 4 (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ↔ (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)))
101ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐴 ∈ ℝ)
112ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐵 ∈ ℝ)
123ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐴 < 𝐵)
135ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
14 rolle.d . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
1514ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
16 simpl 483 . . . . . . . . . . 11 (((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → (𝐹𝑦) ≤ (𝐹𝑢))
1716ralimi 3088 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢))
18 fveq2 6783 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (𝐹𝑦) = (𝐹𝑡))
1918breq1d 5085 . . . . . . . . . . 11 (𝑦 = 𝑡 → ((𝐹𝑦) ≤ (𝐹𝑢) ↔ (𝐹𝑡) ≤ (𝐹𝑢)))
2019cbvralvw 3384 . . . . . . . . . 10 (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹𝑡) ≤ (𝐹𝑢))
2117, 20sylib 217 . . . . . . . . 9 (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹𝑡) ≤ (𝐹𝑢))
2221ad2antrl 725 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ∀𝑡 ∈ (𝐴[,]𝐵)(𝐹𝑡) ≤ (𝐹𝑢))
23 simplrl 774 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → 𝑢 ∈ (𝐴[,]𝐵))
24 simprr 770 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ¬ 𝑢 ∈ {𝐴, 𝐵})
2510, 11, 12, 13, 15, 22, 23, 24rollelem 25162 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑢 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
2625expr 457 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → (¬ 𝑢 ∈ {𝐴, 𝐵} → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
271ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐴 ∈ ℝ)
282ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐵 ∈ ℝ)
293ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝐴 < 𝐵)
30 cncff 24065 . . . . . . . . . . . . . . 15 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
315, 30syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
3231ffvelrnda 6970 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → (𝐹𝑢) ∈ ℝ)
3332renegcld 11411 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → -(𝐹𝑢) ∈ ℝ)
3433fmpttd 6998 . . . . . . . . . . 11 (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)):(𝐴[,]𝐵)⟶ℝ)
35 ax-resscn 10937 . . . . . . . . . . . 12 ℝ ⊆ ℂ
36 ssid 3944 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
37 cncfss 24071 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
3835, 36, 37mp2an 689 . . . . . . . . . . . . . 14 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
3938, 5sselid 3920 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
40 eqid 2739 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) = (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))
4140negfcncf 24095 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
4239, 41syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
43 cncffvrn 24070 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)):(𝐴[,]𝐵)⟶ℝ))
4435, 42, 43sylancr 587 . . . . . . . . . . 11 (𝜑 → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)):(𝐴[,]𝐵)⟶ℝ))
4534, 44mpbird 256 . . . . . . . . . 10 (𝜑 → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4645ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4735a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ⊆ ℂ)
48 iccssre 13170 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
491, 2, 48syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
50 fss 6626 . . . . . . . . . . . . . . . . 17 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5131, 35, 50sylancl 586 . . . . . . . . . . . . . . . 16 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
5251ffvelrnda 6970 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → (𝐹𝑢) ∈ ℂ)
5352negcld 11328 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝐴[,]𝐵)) → -(𝐹𝑢) ∈ ℂ)
54 eqid 2739 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5554tgioo2 23975 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
56 iccntr 23993 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
571, 2, 56syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5847, 49, 53, 55, 54, 57dvmptntr 25144 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑢))))
59 reelprrecn 10972 . . . . . . . . . . . . . . 15 ℝ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ {ℝ, ℂ})
61 ioossicc 13174 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
6261sseli 3918 . . . . . . . . . . . . . . 15 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ (𝐴[,]𝐵))
6362, 52sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑢) ∈ ℂ)
64 fvexd 6798 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑢) ∈ V)
6531feqmptd 6846 . . . . . . . . . . . . . . . 16 (𝜑𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑢)))
6665oveq2d 7300 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑢))))
67 dvf 25080 . . . . . . . . . . . . . . . . 17 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
6814feq2d 6595 . . . . . . . . . . . . . . . . 17 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
6967, 68mpbii 232 . . . . . . . . . . . . . . . 16 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
7069feqmptd 6846 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹) = (𝑢 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑢)))
7147, 49, 52, 55, 54, 57dvmptntr 25144 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑢))) = (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑢))))
7266, 70, 713eqtr3rd 2788 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑢)))
7360, 63, 64, 72dvmptneg 25139 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑢 ∈ (𝐴(,)𝐵) ↦ -(𝐹𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)))
7458, 73eqtrd 2779 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)))
7574dmeqd 5817 . . . . . . . . . . 11 (𝜑 → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = dom (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)))
76 dmmptg 6150 . . . . . . . . . . . 12 (∀𝑢 ∈ (𝐴(,)𝐵)-((ℝ D 𝐹)‘𝑢) ∈ V → dom (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝐴(,)𝐵))
77 negex 11228 . . . . . . . . . . . . 13 -((ℝ D 𝐹)‘𝑢) ∈ V
7877a1i 11 . . . . . . . . . . . 12 (𝑢 ∈ (𝐴(,)𝐵) → -((ℝ D 𝐹)‘𝑢) ∈ V)
7976, 78mprg 3079 . . . . . . . . . . 11 dom (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝐴(,)𝐵)
8075, 79eqtrdi 2795 . . . . . . . . . 10 (𝜑 → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = (𝐴(,)𝐵))
8180ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → dom (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))) = (𝐴(,)𝐵))
82 simpr 485 . . . . . . . . . . . . . 14 (((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → (𝐹𝑣) ≤ (𝐹𝑦))
8331ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
84 simplrr 775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → 𝑣 ∈ (𝐴[,]𝐵))
8583, 84ffvelrnd 6971 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑣) ∈ ℝ)
8631adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
8786ffvelrnda 6970 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝑦) ∈ ℝ)
8885, 87lenegd 11563 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹𝑣) ≤ (𝐹𝑦) ↔ -(𝐹𝑦) ≤ -(𝐹𝑣)))
89 fveq2 6783 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑦 → (𝐹𝑢) = (𝐹𝑦))
9089negeqd 11224 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑦 → -(𝐹𝑢) = -(𝐹𝑦))
91 negex 11228 . . . . . . . . . . . . . . . . . 18 -(𝐹𝑦) ∈ V
9290, 40, 91fvmpt 6884 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴[,]𝐵) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) = -(𝐹𝑦))
9392adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) = -(𝐹𝑦))
94 fveq2 6783 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑣 → (𝐹𝑢) = (𝐹𝑣))
9594negeqd 11224 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑣 → -(𝐹𝑢) = -(𝐹𝑣))
96 negex 11228 . . . . . . . . . . . . . . . . . 18 -(𝐹𝑣) ∈ V
9795, 40, 96fvmpt 6884 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (𝐴[,]𝐵) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) = -(𝐹𝑣))
9884, 97syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) = -(𝐹𝑣))
9993, 98breq12d 5088 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) ↔ -(𝐹𝑦) ≤ -(𝐹𝑣)))
10088, 99bitr4d 281 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹𝑣) ≤ (𝐹𝑦) ↔ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣)))
10182, 100syl5ib 243 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣)))
102101ralimdva 3109 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∀𝑦 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣)))
103102imp 407 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ∀𝑦 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣))
104 fveq2 6783 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) = ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡))
105104breq1d 5085 . . . . . . . . . . . 12 (𝑦 = 𝑡 → (((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) ↔ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣)))
106105cbvralvw 3384 . . . . . . . . . . 11 (∀𝑦 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑦) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣))
107103, 106sylib 217 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣))
108107adantrr 714 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∀𝑡 ∈ (𝐴[,]𝐵)((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑡) ≤ ((𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢))‘𝑣))
109 simplrr 775 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → 𝑣 ∈ (𝐴[,]𝐵))
110 simprr 770 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ¬ 𝑣 ∈ {𝐴, 𝐵})
11127, 28, 29, 46, 81, 108, 109, 110rollelem 25162 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0)
11274fveq1d 6785 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = ((𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))‘𝑥))
113 fveq2 6783 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → ((ℝ D 𝐹)‘𝑢) = ((ℝ D 𝐹)‘𝑥))
114113negeqd 11224 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → -((ℝ D 𝐹)‘𝑢) = -((ℝ D 𝐹)‘𝑥))
115 eqid 2739 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢)) = (𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))
116 negex 11228 . . . . . . . . . . . . . 14 -((ℝ D 𝐹)‘𝑥) ∈ V
117114, 115, 116fvmpt 6884 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑢 ∈ (𝐴(,)𝐵) ↦ -((ℝ D 𝐹)‘𝑢))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
118112, 117sylan9eq 2799 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
119118eqeq1d 2741 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0 ↔ -((ℝ D 𝐹)‘𝑥) = 0))
12014eleq2d 2825 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ dom (ℝ D 𝐹) ↔ 𝑥 ∈ (𝐴(,)𝐵)))
121120biimpar 478 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ dom (ℝ D 𝐹))
12267ffvelrni 6969 . . . . . . . . . . . . 13 (𝑥 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
123121, 122syl 17 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
124123negeq0d 11333 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) = 0 ↔ -((ℝ D 𝐹)‘𝑥) = 0))
125119, 124bitr4d 281 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0 ↔ ((ℝ D 𝐹)‘𝑥) = 0))
126125rexbidva 3226 . . . . . . . . 9 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
127126ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ -(𝐹𝑢)))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
128111, 127mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ∧ ¬ 𝑣 ∈ {𝐴, 𝐵})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
129128expr 457 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → (¬ 𝑣 ∈ {𝐴, 𝐵} → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
130 vex 3437 . . . . . . . . . . 11 𝑢 ∈ V
131130elpr 4585 . . . . . . . . . 10 (𝑢 ∈ {𝐴, 𝐵} ↔ (𝑢 = 𝐴𝑢 = 𝐵))
132 fveq2 6783 . . . . . . . . . . . 12 (𝑢 = 𝐴 → (𝐹𝑢) = (𝐹𝐴))
133132a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑢 = 𝐴 → (𝐹𝑢) = (𝐹𝐴)))
134 rolle.e . . . . . . . . . . . . 13 (𝜑 → (𝐹𝐴) = (𝐹𝐵))
135134eqcomd 2745 . . . . . . . . . . . 12 (𝜑 → (𝐹𝐵) = (𝐹𝐴))
136 fveqeq2 6792 . . . . . . . . . . . 12 (𝑢 = 𝐵 → ((𝐹𝑢) = (𝐹𝐴) ↔ (𝐹𝐵) = (𝐹𝐴)))
137135, 136syl5ibrcom 246 . . . . . . . . . . 11 (𝜑 → (𝑢 = 𝐵 → (𝐹𝑢) = (𝐹𝐴)))
138133, 137jaod 856 . . . . . . . . . 10 (𝜑 → ((𝑢 = 𝐴𝑢 = 𝐵) → (𝐹𝑢) = (𝐹𝐴)))
139131, 138syl5bi 241 . . . . . . . . 9 (𝜑 → (𝑢 ∈ {𝐴, 𝐵} → (𝐹𝑢) = (𝐹𝐴)))
140 eleq1w 2822 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑢 ∈ {𝐴, 𝐵} ↔ 𝑣 ∈ {𝐴, 𝐵}))
141 fveqeq2 6792 . . . . . . . . . . . 12 (𝑢 = 𝑣 → ((𝐹𝑢) = (𝐹𝐴) ↔ (𝐹𝑣) = (𝐹𝐴)))
142140, 141imbi12d 345 . . . . . . . . . . 11 (𝑢 = 𝑣 → ((𝑢 ∈ {𝐴, 𝐵} → (𝐹𝑢) = (𝐹𝐴)) ↔ (𝑣 ∈ {𝐴, 𝐵} → (𝐹𝑣) = (𝐹𝐴))))
143142imbi2d 341 . . . . . . . . . 10 (𝑢 = 𝑣 → ((𝜑 → (𝑢 ∈ {𝐴, 𝐵} → (𝐹𝑢) = (𝐹𝐴))) ↔ (𝜑 → (𝑣 ∈ {𝐴, 𝐵} → (𝐹𝑣) = (𝐹𝐴)))))
144143, 139chvarvv 2003 . . . . . . . . 9 (𝜑 → (𝑣 ∈ {𝐴, 𝐵} → (𝐹𝑣) = (𝐹𝐴)))
145139, 144anim12d 609 . . . . . . . 8 (𝜑 → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))))
146145ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))))
1471rexrd 11034 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℝ*)
1482rexrd 11034 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
149 lbicc2 13205 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
150147, 148, 4, 149syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ (𝐴[,]𝐵))
15131, 150ffvelrnd 6971 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝐴) ∈ ℝ)
152151ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ ℝ)
15387, 152letri3d 11126 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝐴) ∧ (𝐹𝐴) ≤ (𝐹𝑦))))
154 breq2 5079 . . . . . . . . . . . . . . 15 ((𝐹𝑢) = (𝐹𝐴) → ((𝐹𝑦) ≤ (𝐹𝑢) ↔ (𝐹𝑦) ≤ (𝐹𝐴)))
155 breq1 5078 . . . . . . . . . . . . . . 15 ((𝐹𝑣) = (𝐹𝐴) → ((𝐹𝑣) ≤ (𝐹𝑦) ↔ (𝐹𝐴) ≤ (𝐹𝑦)))
156154, 155bi2anan9 636 . . . . . . . . . . . . . 14 (((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴)) → (((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) ↔ ((𝐹𝑦) ≤ (𝐹𝐴) ∧ (𝐹𝐴) ≤ (𝐹𝑦))))
157156bibi2d 343 . . . . . . . . . . . . 13 (((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴)) → (((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) ↔ ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝐴) ∧ (𝐹𝐴) ≤ (𝐹𝑦)))))
158153, 157syl5ibrcom 246 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴)) → ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)))))
159158impancom 452 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) → (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)))))
160159imp 407 . . . . . . . . . 10 ((((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹𝑦) = (𝐹𝐴) ↔ ((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))))
161160ralbidva 3112 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))))
16231ffnd 6610 . . . . . . . . . . . . 13 (𝜑𝐹 Fn (𝐴[,]𝐵))
163 fnconstg 6671 . . . . . . . . . . . . . 14 ((𝐹𝐴) ∈ ℝ → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
164151, 163syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
165 eqfnfv 6918 . . . . . . . . . . . . 13 ((𝐹 Fn (𝐴[,]𝐵) ∧ ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵)) → (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦)))
166162, 164, 165syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦)))
167 fvex 6796 . . . . . . . . . . . . . . 15 (𝐹𝐴) ∈ V
168167fvconst2 7088 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦) = (𝐹𝐴))
169168eqeq2d 2750 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐴[,]𝐵) → ((𝐹𝑦) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦) ↔ (𝐹𝑦) = (𝐹𝐴)))
170169ralbiia 3092 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑦) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴))
171166, 170bitrdi 287 . . . . . . . . . . 11 (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴)))
172 ioon0 13114 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵))
173147, 148, 172syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴(,)𝐵) ≠ ∅ ↔ 𝐴 < 𝐵))
1743, 173mpbird 256 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) ≠ ∅)
175 fconstmpt 5650 . . . . . . . . . . . . . . . . . . . 20 ((𝐴[,]𝐵) × {(𝐹𝐴)}) = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴))
176175eqeq2i 2752 . . . . . . . . . . . . . . . . . . 19 (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) ↔ 𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴)))
177176biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) → 𝐹 = (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴)))
178177oveq2d 7300 . . . . . . . . . . . . . . . . 17 (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) → (ℝ D 𝐹) = (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴))))
179151recnd 11012 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹𝐴) ∈ ℂ)
180179adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ℝ) → (𝐹𝐴) ∈ ℂ)
181 0cnd 10977 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ ℝ) → 0 ∈ ℂ)
18260, 179dvmptc 25131 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D (𝑢 ∈ ℝ ↦ (𝐹𝐴))) = (𝑢 ∈ ℝ ↦ 0))
18360, 180, 181, 182, 49, 55, 54, 57dvmptres2 25135 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℝ D (𝑢 ∈ (𝐴[,]𝐵) ↦ (𝐹𝐴))) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0))
184178, 183sylan9eqr 2801 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) → (ℝ D 𝐹) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0))
185184fveq1d 6785 . . . . . . . . . . . . . . 15 ((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) → ((ℝ D 𝐹)‘𝑥) = ((𝑢 ∈ (𝐴(,)𝐵) ↦ 0)‘𝑥))
186 eqidd 2740 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑥 → 0 = 0)
187 eqid 2739 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (𝐴(,)𝐵) ↦ 0) = (𝑢 ∈ (𝐴(,)𝐵) ↦ 0)
188 c0ex 10978 . . . . . . . . . . . . . . . 16 0 ∈ V
189186, 187, 188fvmpt 6884 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑢 ∈ (𝐴(,)𝐵) ↦ 0)‘𝑥) = 0)
190185, 189sylan9eq 2799 . . . . . . . . . . . . . 14 (((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) = 0)
191190ralrimiva 3104 . . . . . . . . . . . . 13 ((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) → ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
192 r19.2z 4426 . . . . . . . . . . . . 13 (((𝐴(,)𝐵) ≠ ∅ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
193174, 191, 192syl2an2r 682 . . . . . . . . . . . 12 ((𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)})) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
194193ex 413 . . . . . . . . . . 11 (𝜑 → (𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
195171, 194sylbird 259 . . . . . . . . . 10 (𝜑 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
196195ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) = (𝐹𝐴) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
197161, 196sylbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
198197impancom 452 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → (((𝐹𝑢) = (𝐹𝐴) ∧ (𝐹𝑣) = (𝐹𝐴)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
199146, 198syld 47 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ((𝑢 ∈ {𝐴, 𝐵} ∧ 𝑣 ∈ {𝐴, 𝐵}) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
20026, 129, 199ecased 1032 . . . . 5 (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦))) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
201200ex 413 . . . 4 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → (∀𝑦 ∈ (𝐴[,]𝐵)((𝐹𝑦) ≤ (𝐹𝑢) ∧ (𝐹𝑣) ≤ (𝐹𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
2029, 201syl5bir 242 . . 3 ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑣 ∈ (𝐴[,]𝐵))) → ((∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
203202rexlimdvva 3224 . 2 (𝜑 → (∃𝑢 ∈ (𝐴[,]𝐵)∃𝑣 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑢) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑣) ≤ (𝐹𝑦)) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0))
2048, 203mpd 15 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  Vcvv 3433  wss 3888  c0 4257  {csn 4562  {cpr 4564   class class class wbr 5075  cmpt 5158   × cxp 5588  dom cdm 5590  ran crn 5591   Fn wfn 6432  wf 6433  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  *cxr 11017   < clt 11018  cle 11019  -cneg 11215  (,)cioo 13088  [,]cicc 13091  TopOpenctopn 17141  topGenctg 17157  fldccnfld 20606  intcnt 22177  cnccncf 24048   D cdv 25036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040
This theorem is referenced by:  cmvth  25164  lhop1lem  25186
  Copyright terms: Public domain W3C validator