Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl7.1 | ⊢ (𝜑 → 𝜓) |
syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
Ref | Expression |
---|---|
syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl7bi 254 ax12 2425 hbae 2433 tz7.7 6291 fvmptt 6892 f1oweALT 7808 wfrlem12OLD 8142 nneneq 8973 nneneqOLD 8986 pr2nelem 9761 cfcoflem 10029 nnunb 12229 ndvdssub 16116 lsmcv 20401 uvcendim 21052 gsummoncoe1 21473 2ndcsep 22608 atcvat4i 30755 mdsymlem5 30765 sumdmdii 30773 dfon2lem6 33760 colineardim1 34359 bj-hbaeb2 34997 hbae-o 36913 ax12fromc15 36915 cvrat4 37453 llncvrlpln2 37567 lplncvrlvol2 37625 dihmeetlem3N 39315 eel2122old 42308 |
Copyright terms: Public domain | W3C validator |