| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl7.1 | ⊢ (𝜑 → 𝜓) |
| syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
| 4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl7bi 255 ax12 2421 hbae 2429 ceqsalt 3472 elabgtOLD 3630 tz7.7 6337 fvmptt 6954 f1oweALT 7914 nneneq 9130 cfcoflem 10185 nnunb 12398 ndvdssub 16338 lsmcv 21066 uvcendim 21772 gsummoncoe1 22211 2ndcsep 23362 atcvat4i 32359 mdsymlem5 32369 sumdmdii 32377 dfon2lem6 35761 colineardim1 36034 bj-hbaeb2 36791 hbae-o 38881 ax12fromc15 38883 cvrat4 39422 llncvrlpln2 39536 lplncvrlvol2 39594 dihmeetlem3N 41284 naddgeoa 43367 eel2122old 44691 |
| Copyright terms: Public domain | W3C validator |