![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl7.1 | ⊢ (𝜑 → 𝜓) |
syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
Ref | Expression |
---|---|
syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl7bi 255 ax12 2426 hbae 2434 ceqsalt 3513 elabgt 3672 tz7.7 6412 fvmptt 7036 f1oweALT 7996 wfrlem12OLD 8359 nneneq 9244 nneneqOLD 9256 pr2nelemOLD 10041 cfcoflem 10310 nnunb 12520 ndvdssub 16443 lsmcv 21161 uvcendim 21885 gsummoncoe1 22328 2ndcsep 23483 atcvat4i 32426 mdsymlem5 32436 sumdmdii 32444 dfon2lem6 35770 colineardim1 36043 bj-hbaeb2 36801 hbae-o 38885 ax12fromc15 38887 cvrat4 39426 llncvrlpln2 39540 lplncvrlvol2 39598 dihmeetlem3N 41288 naddgeoa 43384 eel2122old 44716 |
Copyright terms: Public domain | W3C validator |