![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl7.1 | ⊢ (𝜑 → 𝜓) |
syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
Ref | Expression |
---|---|
syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl7bi 255 ax12 2431 hbae 2439 ceqsalt 3523 elabgt 3685 tz7.7 6421 fvmptt 7049 f1oweALT 8013 wfrlem12OLD 8376 nneneq 9272 nneneqOLD 9284 pr2nelemOLD 10072 cfcoflem 10341 nnunb 12549 ndvdssub 16457 lsmcv 21166 uvcendim 21890 gsummoncoe1 22333 2ndcsep 23488 atcvat4i 32429 mdsymlem5 32439 sumdmdii 32447 dfon2lem6 35752 colineardim1 36025 bj-hbaeb2 36784 hbae-o 38859 ax12fromc15 38861 cvrat4 39400 llncvrlpln2 39514 lplncvrlvol2 39572 dihmeetlem3N 41262 naddgeoa 43356 eel2122old 44689 |
Copyright terms: Public domain | W3C validator |