| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl7.1 | ⊢ (𝜑 → 𝜓) |
| syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
| 4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl7bi 255 ax12 2421 hbae 2429 ceqsalt 3481 elabgtOLD 3639 tz7.7 6358 fvmptt 6988 f1oweALT 7951 nneneq 9170 pr2nelemOLD 9956 cfcoflem 10225 nnunb 12438 ndvdssub 16379 lsmcv 21051 uvcendim 21756 gsummoncoe1 22195 2ndcsep 23346 atcvat4i 32326 mdsymlem5 32336 sumdmdii 32344 dfon2lem6 35776 colineardim1 36049 bj-hbaeb2 36806 hbae-o 38896 ax12fromc15 38898 cvrat4 39437 llncvrlpln2 39551 lplncvrlvol2 39609 dihmeetlem3N 41299 naddgeoa 43383 eel2122old 44707 |
| Copyright terms: Public domain | W3C validator |