Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl7.1 | ⊢ (𝜑 → 𝜓) |
syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
Ref | Expression |
---|---|
syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl7bi 254 ax12 2423 hbae 2431 tz7.7 6292 fvmptt 6895 f1oweALT 7815 wfrlem12OLD 8151 nneneq 8992 nneneqOLD 9004 pr2nelem 9760 cfcoflem 10028 nnunb 12229 ndvdssub 16118 lsmcv 20403 uvcendim 21054 gsummoncoe1 21475 2ndcsep 22610 atcvat4i 30759 mdsymlem5 30769 sumdmdii 30777 dfon2lem6 33764 colineardim1 34363 bj-hbaeb2 35001 hbae-o 36917 ax12fromc15 36919 cvrat4 37457 llncvrlpln2 37571 lplncvrlvol2 37629 dihmeetlem3N 39319 eel2122old 42338 |
Copyright terms: Public domain | W3C validator |