Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version |
Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl7.1 | ⊢ (𝜑 → 𝜓) |
syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
Ref | Expression |
---|---|
syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl7bi 254 ax12 2423 hbae 2431 tz7.7 6277 fvmptt 6877 f1oweALT 7788 wfrlem12OLD 8122 nneneq 8896 pr2nelem 9691 cfcoflem 9959 nnunb 12159 ndvdssub 16046 lsmcv 20318 uvcendim 20964 gsummoncoe1 21385 2ndcsep 22518 atcvat4i 30660 mdsymlem5 30670 sumdmdii 30678 dfon2lem6 33670 colineardim1 34290 bj-hbaeb2 34928 hbae-o 36844 ax12fromc15 36846 cvrat4 37384 llncvrlpln2 37498 lplncvrlvol2 37556 dihmeetlem3N 39246 eel2122old 42227 |
Copyright terms: Public domain | W3C validator |