| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl7.1 | ⊢ (𝜑 → 𝜓) |
| syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
| 4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl7bi 255 ax12 2427 hbae 2435 ceqsalt 3494 elabgt 3651 tz7.7 6378 fvmptt 7006 f1oweALT 7971 wfrlem12OLD 8334 nneneq 9220 pr2nelemOLD 10017 cfcoflem 10286 nnunb 12497 ndvdssub 16428 lsmcv 21102 uvcendim 21807 gsummoncoe1 22246 2ndcsep 23397 atcvat4i 32378 mdsymlem5 32388 sumdmdii 32396 dfon2lem6 35806 colineardim1 36079 bj-hbaeb2 36836 hbae-o 38921 ax12fromc15 38923 cvrat4 39462 llncvrlpln2 39576 lplncvrlvol2 39634 dihmeetlem3N 41324 naddgeoa 43418 eel2122old 44742 |
| Copyright terms: Public domain | W3C validator |