| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl7.1 | ⊢ (𝜑 → 𝜓) |
| syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
| 4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl7bi 255 ax12 2425 hbae 2433 ceqsalt 3471 elabgtOLD 3624 tz7.7 6337 fvmptt 6955 f1oweALT 7910 nneneq 9122 cfcoflem 10170 nnunb 12384 ndvdssub 16322 lsmcv 21080 uvcendim 21786 gsummoncoe1 22224 2ndcsep 23375 atcvat4i 32379 mdsymlem5 32389 sumdmdii 32397 dfon2lem6 35851 colineardim1 36126 bj-hbaeb2 36883 hbae-o 39022 ax12fromc15 39024 cvrat4 39562 llncvrlpln2 39676 lplncvrlvol2 39734 dihmeetlem3N 41424 naddgeoa 43511 eel2122old 44834 |
| Copyright terms: Public domain | W3C validator |