| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl7.1 | ⊢ (𝜑 → 𝜓) |
| syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
| 4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl7bi 255 ax12 2423 hbae 2431 ceqsalt 3470 elabgtOLD 3628 tz7.7 6332 fvmptt 6949 f1oweALT 7904 nneneq 9115 cfcoflem 10160 nnunb 12374 ndvdssub 16317 lsmcv 21076 uvcendim 21782 gsummoncoe1 22221 2ndcsep 23372 atcvat4i 32372 mdsymlem5 32382 sumdmdii 32390 dfon2lem6 35821 colineardim1 36094 bj-hbaeb2 36851 hbae-o 38941 ax12fromc15 38943 cvrat4 39481 llncvrlpln2 39595 lplncvrlvol2 39653 dihmeetlem3N 41343 naddgeoa 43426 eel2122old 44749 |
| Copyright terms: Public domain | W3C validator |