| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl7 | Structured version Visualization version GIF version | ||
| Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
| Ref | Expression |
|---|---|
| syl7.1 | ⊢ (𝜑 → 𝜓) |
| syl7.2 | ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) |
| Ref | Expression |
|---|---|
| syl7 | ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl7.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | syl7.2 | . 2 ⊢ (𝜒 → (𝜃 → (𝜓 → 𝜏))) | |
| 4 | 2, 3 | syl5d 73 | 1 ⊢ (𝜒 → (𝜃 → (𝜑 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl7bi 255 ax12 2422 hbae 2430 ceqsalt 3484 elabgtOLD 3642 tz7.7 6361 fvmptt 6991 f1oweALT 7954 nneneq 9176 pr2nelemOLD 9963 cfcoflem 10232 nnunb 12445 ndvdssub 16386 lsmcv 21058 uvcendim 21763 gsummoncoe1 22202 2ndcsep 23353 atcvat4i 32333 mdsymlem5 32343 sumdmdii 32351 dfon2lem6 35783 colineardim1 36056 bj-hbaeb2 36813 hbae-o 38903 ax12fromc15 38905 cvrat4 39444 llncvrlpln2 39558 lplncvrlvol2 39616 dihmeetlem3N 41306 naddgeoa 43390 eel2122old 44714 |
| Copyright terms: Public domain | W3C validator |