| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > el12 | Structured version Visualization version GIF version | ||
| Description: Virtual deduction form of syl2an 596. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| el12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| el12.2 | ⊢ ( 𝜏 ▶ 𝜒 ) |
| el12.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| el12 | ⊢ ( ( 𝜑 , 𝜏 ) ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | el12.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | 1 | in1 44591 | . . 3 ⊢ (𝜑 → 𝜓) |
| 3 | el12.2 | . . . 4 ⊢ ( 𝜏 ▶ 𝜒 ) | |
| 4 | 3 | in1 44591 | . . 3 ⊢ (𝜏 → 𝜒) |
| 5 | el12.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 6 | 2, 4, 5 | syl2an 596 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
| 7 | 6 | dfvd2anir 44604 | 1 ⊢ ( ( 𝜑 , 𝜏 ) ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ( wvd1 44589 ( wvhc2 44600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44590 df-vhc2 44601 |
| This theorem is referenced by: elpwgdedVD 44937 sspwimpVD 44939 sspwimpcfVD 44941 suctrALTcfVD 44943 |
| Copyright terms: Public domain | W3C validator |