Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > el12 | Structured version Visualization version GIF version |
Description: Virtual deduction form of syl2an 596. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
el12.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
el12.2 | ⊢ ( 𝜏 ▶ 𝜒 ) |
el12.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
el12 | ⊢ ( ( 𝜑 , 𝜏 ) ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el12.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | 1 | in1 42191 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | el12.2 | . . . 4 ⊢ ( 𝜏 ▶ 𝜒 ) | |
4 | 3 | in1 42191 | . . 3 ⊢ (𝜏 → 𝜒) |
5 | el12.3 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
6 | 2, 4, 5 | syl2an 596 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜃) |
7 | 6 | dfvd2anir 42204 | 1 ⊢ ( ( 𝜑 , 𝜏 ) ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ( wvd1 42189 ( wvhc2 42200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-vd1 42190 df-vhc2 42201 |
This theorem is referenced by: elpwgdedVD 42537 sspwimpVD 42539 sspwimpcfVD 42541 suctrALTcfVD 42543 |
Copyright terms: Public domain | W3C validator |