Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwgdedVD Structured version   Visualization version   GIF version

Theorem elpwgdedVD 42097
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 4491. In form of VD deduction with 𝜑 and 𝜓 as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 41744 is elpwgdedVD 42097 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpwgdedVD.1 (   𝜑   ▶   𝐴 ∈ V   )
elpwgdedVD.2 (   𝜓   ▶   𝐴𝐵   )
Assertion
Ref Expression
elpwgdedVD (   (   𝜑   ,   𝜓   )   ▶   𝐴 ∈ 𝒫 𝐵   )

Proof of Theorem elpwgdedVD
StepHypRef Expression
1 elpwgdedVD.1 . 2 (   𝜑   ▶   𝐴 ∈ V   )
2 elpwgdedVD.2 . 2 (   𝜓   ▶   𝐴𝐵   )
3 elpwg 4491 . . 3 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
43biimpar 481 . 2 ((𝐴 ∈ V ∧ 𝐴𝐵) → 𝐴 ∈ 𝒫 𝐵)
51, 2, 4el12 41906 1 (   (   𝜑   ,   𝜓   )   ▶   𝐴 ∈ 𝒫 𝐵   )
Colors of variables: wff setvar class
Syntax hints:  wcel 2114  Vcvv 3398  wss 3843  𝒫 cpw 4488  (   wvd1 41749  (   wvhc2 41760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-in 3850  df-ss 3860  df-pw 4490  df-vd1 41750  df-vhc2 41761
This theorem is referenced by:  sspwimpVD  42099
  Copyright terms: Public domain W3C validator