| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwgdedVD | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 4569. In form of VD deduction with 𝜑 and 𝜓 as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 44561 is elpwgdedVD 44913 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elpwgdedVD.1 | ⊢ ( 𝜑 ▶ 𝐴 ∈ V ) |
| elpwgdedVD.2 | ⊢ ( 𝜓 ▶ 𝐴 ⊆ 𝐵 ) |
| Ref | Expression |
|---|---|
| elpwgdedVD | ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝐴 ∈ 𝒫 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwgdedVD.1 | . 2 ⊢ ( 𝜑 ▶ 𝐴 ∈ V ) | |
| 2 | elpwgdedVD.2 | . 2 ⊢ ( 𝜓 ▶ 𝐴 ⊆ 𝐵 ) | |
| 3 | elpwg 4569 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 3 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ 𝒫 𝐵) |
| 5 | 1, 2, 4 | el12 44722 | 1 ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝐴 ∈ 𝒫 𝐵 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ( wvd1 44566 ( wvhc2 44577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-pw 4568 df-vd1 44567 df-vhc2 44578 |
| This theorem is referenced by: sspwimpVD 44915 |
| Copyright terms: Public domain | W3C validator |