Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpVD Structured version   Visualization version   GIF version

Theorem sspwimpVD 45075
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 44726) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp 45074 is sspwimpVD 45075 without virtual deductions and was derived from sspwimpVD 45075. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Assertion
Ref Expression
sspwimpVD (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimpVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3441 . . . . . . 7 𝑥 ∈ V
21vd01 44754 . . . . . 6 (      ▶   𝑥 ∈ V   )
3 idn1 44731 . . . . . . 7 (   𝐴𝐵   ▶   𝐴𝐵   )
4 idn1 44731 . . . . . . . 8 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥 ∈ 𝒫 𝐴   )
5 elpwi 4558 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
64, 5el1 44785 . . . . . . 7 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥𝐴   )
7 sstr 3939 . . . . . . . 8 ((𝑥𝐴𝐴𝐵) → 𝑥𝐵)
87ancoms 458 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
93, 6, 8el12 44882 . . . . . 6 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
102, 9elpwgdedVD 45073 . . . . . 6 (   (      ,   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   )   ▶   𝑥 ∈ 𝒫 𝐵   )
112, 9, 10un0.1 44935 . . . . 5 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵   )
1211int2 44763 . . . 4 (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
1312gen11 44773 . . 3 (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
14 df-ss 3915 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1514biimpri 228 . . 3 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1613, 15el1 44785 . 2 (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
1716in1 44728 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wtru 1542  wcel 2113  Vcvv 3437  wss 3898  𝒫 cpw 4551  (   wvhc2 44737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-ss 3915  df-pw 4553  df-vd1 44727  df-vhc2 44738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator