Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimpVD | Structured version Visualization version GIF version |
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 42078)
using conjunction-form virtual hypothesis collections. It was completed
manually, but has the potential to be completed automatically by a tools
program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's
Metamath Proof Assistant.
sspwimp 42427 is sspwimpVD 42428 without virtual deductions and was derived
from sspwimpVD 42428. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
Ref | Expression |
---|---|
sspwimpVD | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | 1 | vd01 42106 | . . . . . 6 ⊢ ( ⊤ ▶ 𝑥 ∈ V ) |
3 | idn1 42083 | . . . . . . 7 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 ) | |
4 | idn1 42083 | . . . . . . . 8 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ∈ 𝒫 𝐴 ) | |
5 | elpwi 4539 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
6 | 4, 5 | el1 42137 | . . . . . . 7 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ⊆ 𝐴 ) |
7 | sstr 3925 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑥 ⊆ 𝐵) | |
8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → 𝑥 ⊆ 𝐵) |
9 | 3, 6, 8 | el12 42235 | . . . . . 6 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 ) |
10 | 2, 9 | elpwgdedVD 42426 | . . . . . 6 ⊢ ( ( ⊤ , ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ) ▶ 𝑥 ∈ 𝒫 𝐵 ) |
11 | 2, 9, 10 | un0.1 42288 | . . . . 5 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵 ) |
12 | 11 | int2 42115 | . . . 4 ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
13 | 12 | gen11 42125 | . . 3 ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
14 | dfss2 3903 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) | |
15 | 14 | biimpri 227 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
16 | 13, 15 | el1 42137 | . 2 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 ) |
17 | 16 | in1 42080 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ( wvhc2 42089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-vd1 42079 df-vhc2 42090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |