Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimpVD | Structured version Visualization version GIF version |
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 42189)
using conjunction-form virtual hypothesis collections. It was completed
manually, but has the potential to be completed automatically by a tools
program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's
Metamath Proof Assistant.
sspwimp 42538 is sspwimpVD 42539 without virtual deductions and was derived
from sspwimpVD 42539. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
Ref | Expression |
---|---|
sspwimpVD | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
2 | 1 | vd01 42217 | . . . . . 6 ⊢ ( ⊤ ▶ 𝑥 ∈ V ) |
3 | idn1 42194 | . . . . . . 7 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 ) | |
4 | idn1 42194 | . . . . . . . 8 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ∈ 𝒫 𝐴 ) | |
5 | elpwi 4542 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
6 | 4, 5 | el1 42248 | . . . . . . 7 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ⊆ 𝐴 ) |
7 | sstr 3929 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑥 ⊆ 𝐵) | |
8 | 7 | ancoms 459 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → 𝑥 ⊆ 𝐵) |
9 | 3, 6, 8 | el12 42346 | . . . . . 6 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 ) |
10 | 2, 9 | elpwgdedVD 42537 | . . . . . 6 ⊢ ( ( ⊤ , ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ) ▶ 𝑥 ∈ 𝒫 𝐵 ) |
11 | 2, 9, 10 | un0.1 42399 | . . . . 5 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵 ) |
12 | 11 | int2 42226 | . . . 4 ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
13 | 12 | gen11 42236 | . . 3 ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
14 | dfss2 3907 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) | |
15 | 14 | biimpri 227 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
16 | 13, 15 | el1 42248 | . 2 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 ) |
17 | 16 | in1 42191 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊤wtru 1540 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 ( wvhc2 42200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-vd1 42190 df-vhc2 42201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |