Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpVD Structured version   Visualization version   GIF version

Theorem sspwimpVD 44890
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 44540) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp 44889 is sspwimpVD 44890 without virtual deductions and was derived from sspwimpVD 44890. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Assertion
Ref Expression
sspwimpVD (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimpVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . . 7 𝑥 ∈ V
21vd01 44568 . . . . . 6 (      ▶   𝑥 ∈ V   )
3 idn1 44545 . . . . . . 7 (   𝐴𝐵   ▶   𝐴𝐵   )
4 idn1 44545 . . . . . . . 8 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥 ∈ 𝒫 𝐴   )
5 elpwi 4629 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
64, 5el1 44599 . . . . . . 7 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥𝐴   )
7 sstr 4017 . . . . . . . 8 ((𝑥𝐴𝐴𝐵) → 𝑥𝐵)
87ancoms 458 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
93, 6, 8el12 44697 . . . . . 6 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
102, 9elpwgdedVD 44888 . . . . . 6 (   (      ,   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   )   ▶   𝑥 ∈ 𝒫 𝐵   )
112, 9, 10un0.1 44750 . . . . 5 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵   )
1211int2 44577 . . . 4 (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
1312gen11 44587 . . 3 (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
14 df-ss 3993 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1514biimpri 228 . . 3 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1613, 15el1 44599 . 2 (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
1716in1 44542 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wtru 1538  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622  (   wvhc2 44551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-pw 4624  df-vd1 44541  df-vhc2 44552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator