| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimpVD | Structured version Visualization version GIF version | ||
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 44726)
using conjunction-form virtual hypothesis collections. It was completed
manually, but has the potential to be completed automatically by a tools
program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's
Metamath Proof Assistant.
sspwimp 45074 is sspwimpVD 45075 without virtual deductions and was derived
from sspwimpVD 45075. (Contributed by Alan Sare, 23-Apr-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| Ref | Expression |
|---|---|
| sspwimpVD | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | 1 | vd01 44754 | . . . . . 6 ⊢ ( ⊤ ▶ 𝑥 ∈ V ) |
| 3 | idn1 44731 | . . . . . . 7 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 ) | |
| 4 | idn1 44731 | . . . . . . . 8 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ∈ 𝒫 𝐴 ) | |
| 5 | elpwi 4558 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
| 6 | 4, 5 | el1 44785 | . . . . . . 7 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ⊆ 𝐴 ) |
| 7 | sstr 3939 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑥 ⊆ 𝐵) | |
| 8 | 7 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → 𝑥 ⊆ 𝐵) |
| 9 | 3, 6, 8 | el12 44882 | . . . . . 6 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 ) |
| 10 | 2, 9 | elpwgdedVD 45073 | . . . . . 6 ⊢ ( ( ⊤ , ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ) ▶ 𝑥 ∈ 𝒫 𝐵 ) |
| 11 | 2, 9, 10 | un0.1 44935 | . . . . 5 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵 ) |
| 12 | 11 | int2 44763 | . . . 4 ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
| 13 | 12 | gen11 44773 | . . 3 ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
| 14 | df-ss 3915 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) | |
| 15 | 14 | biimpri 228 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 16 | 13, 15 | el1 44785 | . 2 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 ) |
| 17 | 16 | in1 44728 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ⊤wtru 1542 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 𝒫 cpw 4551 ( wvhc2 44737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-pw 4553 df-vd1 44727 df-vhc2 44738 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |