Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpcfVD Structured version   Visualization version   GIF version

Theorem sspwimpcfVD 41627
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 41275) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf 41626 is sspwimpcfVD 41627 without virtual deductions and was derived from sspwimpcfVD 41627. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Assertion
Ref Expression
sspwimpcfVD (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimpcfVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3444 . . . . . 6 𝑥 ∈ V
2 idn1 41280 . . . . . . 7 (   𝐴𝐵   ▶   𝐴𝐵   )
3 idn1 41280 . . . . . . . 8 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥 ∈ 𝒫 𝐴   )
4 elpwi 4506 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53, 4el1 41334 . . . . . . 7 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥𝐴   )
6 sstr2 3922 . . . . . . . 8 (𝑥𝐴 → (𝐴𝐵𝑥𝐵))
76impcom 411 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
82, 5, 7el12 41432 . . . . . 6 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
9 elpwg 4500 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ 𝒫 𝐵𝑥𝐵))
109biimpar 481 . . . . . 6 ((𝑥 ∈ V ∧ 𝑥𝐵) → 𝑥 ∈ 𝒫 𝐵)
111, 8, 10el021old 41407 . . . . 5 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵   )
1211int2 41312 . . . 4 (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
1312gen11 41322 . . 3 (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
14 dfss2 3901 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1514biimpri 231 . . 3 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1613, 15el1 41334 . 2 (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
1716in1 41277 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1536  wcel 2111  Vcvv 3441  wss 3881  𝒫 cpw 4497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-in 3888  df-ss 3898  df-pw 4499  df-vd1 41276  df-vhc2 41287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator