Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpcfVD Structured version   Visualization version   GIF version

Theorem sspwimpcfVD 44919
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 44567) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf 44918 is sspwimpcfVD 44919 without virtual deductions and was derived from sspwimpcfVD 44919. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Assertion
Ref Expression
sspwimpcfVD (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimpcfVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . . 6 𝑥 ∈ V
2 idn1 44572 . . . . . . 7 (   𝐴𝐵   ▶   𝐴𝐵   )
3 idn1 44572 . . . . . . . 8 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥 ∈ 𝒫 𝐴   )
4 elpwi 4612 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53, 4el1 44626 . . . . . . 7 (   𝑥 ∈ 𝒫 𝐴   ▶   𝑥𝐴   )
6 sstr2 4002 . . . . . . . 8 (𝑥𝐴 → (𝐴𝐵𝑥𝐵))
76impcom 407 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
82, 5, 7el12 44724 . . . . . 6 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
9 elpwg 4608 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ 𝒫 𝐵𝑥𝐵))
109biimpar 477 . . . . . 6 ((𝑥 ∈ V ∧ 𝑥𝐵) → 𝑥 ∈ 𝒫 𝐵)
111, 8, 10el021old 44699 . . . . 5 (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵   )
1211int2 44604 . . . 4 (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
1312gen11 44614 . . 3 (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)   )
14 df-ss 3980 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1514biimpri 228 . . 3 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1613, 15el1 44626 . 2 (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
1716in1 44569 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-pw 4607  df-vd1 44568  df-vhc2 44579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator