| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimpcfVD | Structured version Visualization version GIF version | ||
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 44563)
using conjunction-form virtual hypothesis collections. It was completed
automatically by a tools program which would invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sspwimpcf 44913 is sspwimpcfVD 44914 without virtual deductions and was derived
from sspwimpcfVD 44914.
The version of completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| Ref | Expression |
|---|---|
| sspwimpcfVD | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | idn1 44568 | . . . . . . 7 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 ) | |
| 3 | idn1 44568 | . . . . . . . 8 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ∈ 𝒫 𝐴 ) | |
| 4 | elpwi 4560 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
| 5 | 3, 4 | el1 44622 | . . . . . . 7 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ⊆ 𝐴 ) |
| 6 | sstr2 3944 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) | |
| 7 | 6 | impcom 407 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → 𝑥 ⊆ 𝐵) |
| 8 | 2, 5, 7 | el12 44719 | . . . . . 6 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 ) |
| 9 | elpwg 4556 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 10 | 9 | biimpar 477 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑥 ⊆ 𝐵) → 𝑥 ∈ 𝒫 𝐵) |
| 11 | 1, 8, 10 | el021old 44695 | . . . . 5 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵 ) |
| 12 | 11 | int2 44600 | . . . 4 ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
| 13 | 12 | gen11 44610 | . . 3 ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
| 14 | df-ss 3922 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) | |
| 15 | 14 | biimpri 228 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 16 | 13, 15 | el1 44622 | . 2 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 ) |
| 17 | 16 | in1 44565 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-pw 4555 df-vd1 44564 df-vhc2 44575 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |