| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimpcfVD | Structured version Visualization version GIF version | ||
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 44561)
using conjunction-form virtual hypothesis collections. It was completed
automatically by a tools program which would invokes Mel L. O'Cat's mmj2
and Norm Megill's Metamath Proof Assistant.
sspwimpcf 44911 is sspwimpcfVD 44912 without virtual deductions and was derived
from sspwimpcfVD 44912.
The version of completeusersproof.cmd used is capable of only generating
conjunction-form unification theorems, not unification deductions.
(Contributed by Alan Sare, 13-Jun-2015.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
| Ref | Expression |
|---|---|
| sspwimpcfVD | ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | idn1 44566 | . . . . . . 7 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝐴 ⊆ 𝐵 ) | |
| 3 | idn1 44566 | . . . . . . . 8 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ∈ 𝒫 𝐴 ) | |
| 4 | elpwi 4587 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
| 5 | 3, 4 | el1 44620 | . . . . . . 7 ⊢ ( 𝑥 ∈ 𝒫 𝐴 ▶ 𝑥 ⊆ 𝐴 ) |
| 6 | sstr2 3970 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝐵 → 𝑥 ⊆ 𝐵)) | |
| 7 | 6 | impcom 407 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴) → 𝑥 ⊆ 𝐵) |
| 8 | 2, 5, 7 | el12 44717 | . . . . . 6 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ⊆ 𝐵 ) |
| 9 | elpwg 4583 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 10 | 9 | biimpar 477 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑥 ⊆ 𝐵) → 𝑥 ∈ 𝒫 𝐵) |
| 11 | 1, 8, 10 | el021old 44693 | . . . . 5 ⊢ ( ( 𝐴 ⊆ 𝐵 , 𝑥 ∈ 𝒫 𝐴 ) ▶ 𝑥 ∈ 𝒫 𝐵 ) |
| 12 | 11 | int2 44598 | . . . 4 ⊢ ( 𝐴 ⊆ 𝐵 ▶ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
| 13 | 12 | gen11 44608 | . . 3 ⊢ ( 𝐴 ⊆ 𝐵 ▶ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) ) |
| 14 | df-ss 3948 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵)) | |
| 15 | 14 | biimpri 228 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| 16 | 13, 15 | el1 44620 | . 2 ⊢ ( 𝐴 ⊆ 𝐵 ▶ 𝒫 𝐴 ⊆ 𝒫 𝐵 ) |
| 17 | 16 | in1 44563 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-pw 4582 df-vd1 44562 df-vhc2 44573 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |