Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimh | Structured version Visualization version GIF version |
Description: Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html. (Contributed by NM, 26-Jun-2002.) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019.) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023.) |
Ref | Expression |
---|---|
elimh.1 | ⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜑) → (𝜏 ↔ 𝜒)) |
elimh.2 | ⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜓) → (𝜏 ↔ 𝜃)) |
elimh.3 | ⊢ 𝜃 |
Ref | Expression |
---|---|
elimh | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifptru 1073 | . . . 4 ⊢ (𝜒 → (if-(𝜒, 𝜑, 𝜓) ↔ 𝜑)) | |
2 | elimh.1 | . . . 4 ⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜑) → (𝜏 ↔ 𝜒)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜒 → (𝜏 ↔ 𝜒)) |
4 | 3 | ibir 267 | . 2 ⊢ (𝜒 → 𝜏) |
5 | elimh.3 | . . 3 ⊢ 𝜃 | |
6 | ifpfal 1074 | . . . 4 ⊢ (¬ 𝜒 → (if-(𝜒, 𝜑, 𝜓) ↔ 𝜓)) | |
7 | elimh.2 | . . . 4 ⊢ ((if-(𝜒, 𝜑, 𝜓) ↔ 𝜓) → (𝜏 ↔ 𝜃)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (¬ 𝜒 → (𝜏 ↔ 𝜃)) |
9 | 5, 8 | mpbiri 257 | . 2 ⊢ (¬ 𝜒 → 𝜏) |
10 | 4, 9 | pm2.61i 182 | 1 ⊢ 𝜏 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: con3ALT 1084 |
Copyright terms: Public domain | W3C validator |