Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifptru | Structured version Visualization version GIF version |
Description: Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 4465. This is essentially dedlema 1043. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 10-Jul-2020.) |
Ref | Expression |
---|---|
ifptru | ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 361 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
2 | orc 864 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ 𝜒)) | |
3 | 2 | biantrud 532 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒)))) |
4 | dfifp3 1063 | . . 3 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
5 | 3, 4 | bitr4di 289 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, 𝜒))) |
6 | 1, 5 | bitr2d 279 | 1 ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: ifpfal 1074 ifpid 1075 elimh 1082 dedt 1083 axprlem3 5348 axprlem4 5349 wlkl1loop 28005 lfgrwlkprop 28055 eupth2lem3lem3 28594 satfv1lem 33324 wl-3xortru 35642 sn-axprlem3 40186 |
Copyright terms: Public domain | W3C validator |