Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifptru | Structured version Visualization version GIF version |
Description: Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 4427. This is essentially dedlema 1042. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 10-Jul-2020.) |
Ref | Expression |
---|---|
ifptru | ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimt 365 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | |
2 | orc 865 | . . . 4 ⊢ (𝜑 → (𝜑 ∨ 𝜒)) | |
3 | 2 | biantrud 536 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒)))) |
4 | dfifp3 1062 | . . 3 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
5 | 3, 4 | bitr4di 293 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ if-(𝜑, 𝜓, 𝜒))) |
6 | 1, 5 | bitr2d 283 | 1 ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∨ wo 845 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ifp 1060 |
This theorem is referenced by: ifpfal 1073 ifpid 1074 elimh 1081 dedt 1082 axprlem3 5295 axprlem4 5296 wlkl1loop 27519 lfgrwlkprop 27569 eupth2lem3lem3 28107 satfv1lem 32833 wl-3xortru 35161 sn-axprlem3 39693 |
Copyright terms: Public domain | W3C validator |