MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifptru Structured version   Visualization version   GIF version

Theorem ifptru 1073
Description: Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 4465. This is essentially dedlema 1043. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 10-Jul-2020.)
Assertion
Ref Expression
ifptru (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓))

Proof of Theorem ifptru
StepHypRef Expression
1 biimt 361 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
2 orc 864 . . . 4 (𝜑 → (𝜑𝜒))
32biantrud 532 . . 3 (𝜑 → ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜑𝜒))))
4 dfifp3 1063 . . 3 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
53, 4bitr4di 289 . 2 (𝜑 → ((𝜑𝜓) ↔ if-(𝜑, 𝜓, 𝜒)))
61, 5bitr2d 279 1 (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by:  ifpfal  1074  ifpid  1075  elimh  1082  dedt  1083  axprlem3  5348  axprlem4  5349  wlkl1loop  28005  lfgrwlkprop  28055  eupth2lem3lem3  28594  satfv1lem  33324  wl-3xortru  35642  sn-axprlem3  40186
  Copyright terms: Public domain W3C validator