Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpfal Structured version   Visualization version   GIF version

Theorem ifpfal 1072
 Description: Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 4437. This is essentially dedlemb 1042. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 25-Jun-2020.)
Assertion
Ref Expression
ifpfal 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒))

Proof of Theorem ifpfal
StepHypRef Expression
1 ifpn 1069 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓))
2 ifptru 1071 . 2 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ 𝜒))
31, 2syl5bb 286 1 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209  if-wif 1058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059 This theorem is referenced by:  ifpid  1073  elimh  1080  axprlem3  5295  axprlem5  5297  wlkdlem4  27519  lfgriswlk  27522  2pthnloop  27564  eupth2lem3lem4  28060  satfv1lem  32788  wl-3xorfal  35040  sn-axprlem3  39552
 Copyright terms: Public domain W3C validator