Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifpfal | Structured version Visualization version GIF version |
Description: Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 4468. This is essentially dedlemb 1044. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 25-Jun-2020.) |
Ref | Expression |
---|---|
ifpfal | ⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpn 1071 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) | |
2 | ifptru 1073 | . 2 ⊢ (¬ 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ 𝜒)) | |
3 | 1, 2 | bitrid 282 | 1 ⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: ifpid 1075 elimh 1082 axprlem3 5348 axprlem5 5350 wlkdlem4 28053 lfgriswlk 28056 2pthnloop 28099 eupth2lem3lem4 28595 satfv1lem 33324 wl-3xorfal 35643 sn-axprlem3 40186 |
Copyright terms: Public domain | W3C validator |