Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifpfal | Structured version Visualization version GIF version |
Description: Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 4465. This is essentially dedlemb 1043. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 25-Jun-2020.) |
Ref | Expression |
---|---|
ifpfal | ⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpn 1070 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)) | |
2 | ifptru 1072 | . 2 ⊢ (¬ 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ 𝜒)) | |
3 | 1, 2 | syl5bb 282 | 1 ⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: ifpid 1074 elimh 1081 axprlem3 5343 axprlem5 5345 wlkdlem4 27955 lfgriswlk 27958 2pthnloop 28000 eupth2lem3lem4 28496 satfv1lem 33224 wl-3xorfal 35570 sn-axprlem3 40114 |
Copyright terms: Public domain | W3C validator |