MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpfal Structured version   Visualization version   GIF version

Theorem ifpfal 1077
Description: Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 4448. This is essentially dedlemb 1047. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 25-Jun-2020.)
Assertion
Ref Expression
ifpfal 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒))

Proof of Theorem ifpfal
StepHypRef Expression
1 ifpn 1074 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓))
2 ifptru 1076 . 2 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ 𝜒))
31, 2syl5bb 286 1 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  if-wif 1063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064
This theorem is referenced by:  ifpid  1078  elimh  1085  axprlem3  5318  axprlem5  5320  wlkdlem4  27773  lfgriswlk  27776  2pthnloop  27818  eupth2lem3lem4  28314  satfv1lem  33037  wl-3xorfal  35380  sn-axprlem3  39908
  Copyright terms: Public domain W3C validator