Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 266 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: elimh 1082 eusv2i 5317 relsnb 5712 ffdm 6630 ov 7417 ovg 7437 oacl 8365 nnacl 8442 elpm2r 8633 djuxpdom 9941 djufi 9942 cfcof 10030 hargch 10429 uzaddcl 12644 expcllem 13793 lcmfval 16326 lcmf0val 16327 mreunirn 17310 filunirn 23033 ustelimasn 23374 metustfbas 23713 usgreqdrusgr 27935 pjini 30061 fzspl 31111 f1ocnt 31123 xrge0tsmsbi 31318 bnj983 32931 poimirlem16 35793 poimirlem19 35796 poimirlem25 35802 ac6s6 36330 zrtelqelz 40345 fouriersw 43772 etransclem25 43800 ismea 43989 bits0oALTV 45133 uzlidlring 45487 linccl 45755 |
Copyright terms: Public domain | W3C validator |