| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ibir | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ibi 267 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: elimh 1082 eusv2i 5327 relsnb 5737 ffdm 6675 ov 7485 ovg 7506 oacl 8445 nnacl 8521 elpm2r 8764 djuxpdom 10072 djufi 10073 cfcof 10160 hargch 10559 uzaddcl 12797 expcllem 13974 lcmfval 16527 lcmf0val 16528 mreunirn 17498 filunirn 23792 ustelimasn 24133 metustfbas 24467 zrtelqelz 26690 usgreqdrusgr 29542 pjini 31671 fzspl 32764 f1ocnt 32774 xrge0tsmsbi 33035 bnj983 34955 poimirlem16 37676 poimirlem19 37679 poimirlem25 37685 ac6s6 38212 fouriersw 46269 etransclem25 46297 ismea 46489 bits0oALTV 47712 uzlidlring 48266 linccl 48446 resinsnlem 48902 isinito2 49531 termc2 49550 discsntermlem 49602 |
| Copyright terms: Public domain | W3C validator |