| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ibir | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ibi 267 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: elimh 1082 eusv2i 5336 relsnb 5749 ffdm 6685 ov 7497 ovg 7518 oacl 8460 nnacl 8536 elpm2r 8779 djuxpdom 10099 djufi 10100 cfcof 10187 hargch 10586 uzaddcl 12824 expcllem 13998 lcmfval 16551 lcmf0val 16552 mreunirn 17522 filunirn 23786 ustelimasn 24127 metustfbas 24462 zrtelqelz 26685 usgreqdrusgr 29533 pjini 31662 fzspl 32751 f1ocnt 32764 xrge0tsmsbi 33035 bnj983 34937 poimirlem16 37635 poimirlem19 37638 poimirlem25 37644 ac6s6 38171 fouriersw 46232 etransclem25 46260 ismea 46452 bits0oALTV 47685 uzlidlring 48239 linccl 48419 resinsnlem 48875 isinito2 49504 termc2 49523 discsntermlem 49575 |
| Copyright terms: Public domain | W3C validator |