| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ibir | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ibi 267 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: elimh 1082 eusv2i 5336 relsnb 5748 ffdm 6688 ov 7499 ovg 7520 oacl 8459 nnacl 8535 elpm2r 8778 djuxpdom 10088 djufi 10089 cfcof 10176 hargch 10575 uzaddcl 12808 expcllem 13986 lcmfval 16539 lcmf0val 16540 mreunirn 17511 filunirn 23817 ustelimasn 24158 metustfbas 24492 zrtelqelz 26715 usgreqdrusgr 29568 pjini 31700 fzspl 32797 f1ocnt 32808 xrge0tsmsbi 33084 bnj983 35035 poimirlem16 37749 poimirlem19 37752 poimirlem25 37758 ac6s6 38285 fouriersw 46391 etransclem25 46419 ismea 46611 bits0oALTV 47843 uzlidlring 48397 linccl 48576 resinsnlem 49032 isinito2 49660 termc2 49679 discsntermlem 49731 |
| Copyright terms: Public domain | W3C validator |