MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibir Structured version   Visualization version   GIF version

Theorem ibir 267
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1 (𝜑 → (𝜓𝜑))
Assertion
Ref Expression
ibir (𝜑𝜓)

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3 (𝜑 → (𝜓𝜑))
21bicomd 222 . 2 (𝜑 → (𝜑𝜓))
32ibi 266 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  elimh  1082  eusv2i  5317  relsnb  5712  ffdm  6630  ov  7417  ovg  7437  oacl  8365  nnacl  8442  elpm2r  8633  djuxpdom  9941  djufi  9942  cfcof  10030  hargch  10429  uzaddcl  12644  expcllem  13793  lcmfval  16326  lcmf0val  16327  mreunirn  17310  filunirn  23033  ustelimasn  23374  metustfbas  23713  usgreqdrusgr  27935  pjini  30061  fzspl  31111  f1ocnt  31123  xrge0tsmsbi  31318  bnj983  32931  poimirlem16  35793  poimirlem19  35796  poimirlem25  35802  ac6s6  36330  zrtelqelz  40345  fouriersw  43772  etransclem25  43800  ismea  43989  bits0oALTV  45133  uzlidlring  45487  linccl  45755
  Copyright terms: Public domain W3C validator