Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 266 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: elimh 1081 eusv2i 5312 relsnb 5701 ffdm 6614 ov 7395 ovg 7415 oacl 8327 nnacl 8404 elpm2r 8591 djuxpdom 9872 djufi 9873 cfcof 9961 hargch 10360 uzaddcl 12573 expcllem 13721 lcmfval 16254 lcmf0val 16255 mreunirn 17227 filunirn 22941 ustelimasn 23282 metustfbas 23619 usgreqdrusgr 27838 pjini 29962 fzspl 31013 f1ocnt 31025 xrge0tsmsbi 31220 bnj983 32831 poimirlem16 35720 poimirlem19 35723 poimirlem25 35729 ac6s6 36257 zrtelqelz 40266 fouriersw 43662 etransclem25 43690 ismea 43879 bits0oALTV 45021 uzlidlring 45375 linccl 45643 |
Copyright terms: Public domain | W3C validator |