![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 215 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 259 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: elimh 1061 eusv2i 5148 relsnb 5525 ffdm 6365 ov 7110 ovg 7129 oacl 7962 nnacl 8038 elpm2r 8224 djuxpdom 9409 djufi 9410 cfcof 9494 hargch 9893 uzaddcl 12118 expcllem 13255 lcmfval 15821 lcmf0val 15822 mreunirn 16730 filunirn 22194 ustelimasn 22534 metustfbas 22870 usgreqdrusgr 27053 pjini 29257 fzspl 30270 f1ocnt 30279 xrge0tsmsbi 30537 bnj983 31876 poimirlem16 34355 poimirlem19 34358 poimirlem25 34364 ac6s6 34900 zrtelqelz 38630 fouriersw 41953 etransclem25 41981 ismea 42170 bits0oALTV 43220 uzlidlring 43570 linccl 43842 |
Copyright terms: Public domain | W3C validator |