Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 266 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: elimh 1082 eusv2i 5321 relsnb 5710 ffdm 6627 ov 7409 ovg 7429 oacl 8348 nnacl 8425 elpm2r 8614 djuxpdom 9940 djufi 9941 cfcof 10029 hargch 10428 uzaddcl 12641 expcllem 13789 lcmfval 16322 lcmf0val 16323 mreunirn 17306 filunirn 23029 ustelimasn 23370 metustfbas 23709 usgreqdrusgr 27931 pjini 30055 fzspl 31105 f1ocnt 31117 xrge0tsmsbi 31312 bnj983 32925 poimirlem16 35787 poimirlem19 35790 poimirlem25 35796 ac6s6 36324 zrtelqelz 40340 fouriersw 43741 etransclem25 43769 ismea 43958 bits0oALTV 45100 uzlidlring 45454 linccl 45722 |
Copyright terms: Public domain | W3C validator |