MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibir Structured version   Visualization version   GIF version

Theorem ibir 267
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1 (𝜑 → (𝜓𝜑))
Assertion
Ref Expression
ibir (𝜑𝜓)

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3 (𝜑 → (𝜓𝜑))
21bicomd 222 . 2 (𝜑 → (𝜑𝜓))
32ibi 266 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  elimh  1082  eusv2i  5321  relsnb  5710  ffdm  6627  ov  7409  ovg  7429  oacl  8348  nnacl  8425  elpm2r  8614  djuxpdom  9940  djufi  9941  cfcof  10029  hargch  10428  uzaddcl  12641  expcllem  13789  lcmfval  16322  lcmf0val  16323  mreunirn  17306  filunirn  23029  ustelimasn  23370  metustfbas  23709  usgreqdrusgr  27931  pjini  30055  fzspl  31105  f1ocnt  31117  xrge0tsmsbi  31312  bnj983  32925  poimirlem16  35787  poimirlem19  35790  poimirlem25  35796  ac6s6  36324  zrtelqelz  40340  fouriersw  43741  etransclem25  43769  ismea  43958  bits0oALTV  45100  uzlidlring  45454  linccl  45722
  Copyright terms: Public domain W3C validator