| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ibir | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ibi 267 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: elimh 1082 eusv2i 5349 relsnb 5765 ffdm 6717 ov 7533 ovg 7554 oacl 8499 nnacl 8575 elpm2r 8818 djuxpdom 10139 djufi 10140 cfcof 10227 hargch 10626 uzaddcl 12863 expcllem 14037 lcmfval 16591 lcmf0val 16592 mreunirn 17562 filunirn 23769 ustelimasn 24110 metustfbas 24445 zrtelqelz 26668 usgreqdrusgr 29496 pjini 31628 fzspl 32712 f1ocnt 32725 xrge0tsmsbi 33003 bnj983 34941 poimirlem16 37630 poimirlem19 37633 poimirlem25 37639 ac6s6 38166 fouriersw 46229 etransclem25 46257 ismea 46449 bits0oALTV 47679 uzlidlring 48220 linccl 48400 resinsnlem 48856 isinito2 49485 termc2 49504 discsntermlem 49556 |
| Copyright terms: Public domain | W3C validator |