![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 267 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: elimh 1084 eusv2i 5393 relsnb 5803 ffdm 6748 ov 7552 ovg 7572 oacl 8535 nnacl 8611 elpm2r 8839 djuxpdom 10180 djufi 10181 cfcof 10269 hargch 10668 uzaddcl 12888 expcllem 14038 lcmfval 16558 lcmf0val 16559 mreunirn 17545 filunirn 23386 ustelimasn 23727 metustfbas 24066 usgreqdrusgr 28825 pjini 30952 fzspl 32001 f1ocnt 32013 xrge0tsmsbi 32210 bnj983 33962 poimirlem16 36504 poimirlem19 36507 poimirlem25 36513 ac6s6 37040 zrtelqelz 41235 fouriersw 44947 etransclem25 44975 ismea 45167 bits0oALTV 46349 uzlidlring 46827 linccl 47095 |
Copyright terms: Public domain | W3C validator |