| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ibir | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ibi 267 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: elimh 1082 eusv2i 5344 relsnb 5756 ffdm 6699 ov 7513 ovg 7534 oacl 8476 nnacl 8552 elpm2r 8795 djuxpdom 10115 djufi 10116 cfcof 10203 hargch 10602 uzaddcl 12839 expcllem 14013 lcmfval 16567 lcmf0val 16568 mreunirn 17538 filunirn 23745 ustelimasn 24086 metustfbas 24421 zrtelqelz 26644 usgreqdrusgr 29472 pjini 31601 fzspl 32685 f1ocnt 32698 xrge0tsmsbi 32976 bnj983 34914 poimirlem16 37603 poimirlem19 37606 poimirlem25 37612 ac6s6 38139 fouriersw 46202 etransclem25 46230 ismea 46422 bits0oALTV 47655 uzlidlring 48196 linccl 48376 resinsnlem 48832 isinito2 49461 termc2 49480 discsntermlem 49532 |
| Copyright terms: Public domain | W3C validator |