![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 267 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: elimh 1082 eusv2i 5400 relsnb 5815 ffdm 6766 ov 7577 ovg 7598 oacl 8572 nnacl 8648 elpm2r 8884 djuxpdom 10224 djufi 10225 cfcof 10312 hargch 10711 uzaddcl 12944 expcllem 14110 lcmfval 16655 lcmf0val 16656 mreunirn 17646 filunirn 23906 ustelimasn 24247 metustfbas 24586 zrtelqelz 26816 usgreqdrusgr 29601 pjini 31728 fzspl 32798 f1ocnt 32810 xrge0tsmsbi 33049 bnj983 34944 poimirlem16 37623 poimirlem19 37626 poimirlem25 37632 ac6s6 38159 fouriersw 46187 etransclem25 46215 ismea 46407 bits0oALTV 47606 uzlidlring 48079 linccl 48260 |
Copyright terms: Public domain | W3C validator |