![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 267 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: elimh 1083 eusv2i 5412 relsnb 5826 ffdm 6777 ov 7594 ovg 7615 oacl 8591 nnacl 8667 elpm2r 8903 djuxpdom 10255 djufi 10256 cfcof 10343 hargch 10742 uzaddcl 12969 expcllem 14123 lcmfval 16668 lcmf0val 16669 mreunirn 17659 filunirn 23911 ustelimasn 24252 metustfbas 24591 zrtelqelz 26819 usgreqdrusgr 29604 pjini 31731 fzspl 32795 f1ocnt 32807 xrge0tsmsbi 33042 bnj983 34927 poimirlem16 37596 poimirlem19 37599 poimirlem25 37605 ac6s6 38132 fouriersw 46152 etransclem25 46180 ismea 46372 bits0oALTV 47555 uzlidlring 47958 linccl 48143 |
Copyright terms: Public domain | W3C validator |