![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliminable3b | Structured version Visualization version GIF version |
Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eliminable3b | ⊢ ({𝑥 ∣ 𝜑} ∈ {𝑦 ∣ 𝜓} ↔ ∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ {𝑦 ∣ 𝜓})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2812 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ {𝑦 ∣ 𝜓} ↔ ∃𝑧(𝑧 = {𝑥 ∣ 𝜑} ∧ 𝑧 ∈ {𝑦 ∣ 𝜓})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-clel 2811 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |