| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > empty | Structured version Visualization version GIF version | ||
| Description: Two characterizations of the empty domain. (Contributed by Gérard Lang, 5-Feb-2024.) |
| Ref | Expression |
|---|---|
| empty | ⊢ (¬ ∃𝑥⊤ ↔ ∀𝑥⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fal 1552 | . . 3 ⊢ (⊥ ↔ ¬ ⊤) | |
| 2 | 1 | albii 1818 | . 2 ⊢ (∀𝑥⊥ ↔ ∀𝑥 ¬ ⊤) |
| 3 | alnex 1780 | . 2 ⊢ (∀𝑥 ¬ ⊤ ↔ ¬ ∃𝑥⊤) | |
| 4 | 2, 3 | bitr2i 276 | 1 ⊢ (¬ ∃𝑥⊤ ↔ ∀𝑥⊥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1537 ⊤wtru 1540 ⊥wfal 1551 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-fal 1552 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |