MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  empty Structured version   Visualization version   GIF version

Theorem empty 1907
Description: Two characterizations of the empty domain. (Contributed by Gérard Lang, 5-Feb-2024.)
Assertion
Ref Expression
empty (¬ ∃𝑥⊤ ↔ ∀𝑥⊥)

Proof of Theorem empty
StepHypRef Expression
1 df-fal 1551 . . 3 (⊥ ↔ ¬ ⊤)
21albii 1821 . 2 (∀𝑥⊥ ↔ ∀𝑥 ¬ ⊤)
3 alnex 1783 . 2 (∀𝑥 ¬ ⊤ ↔ ¬ ∃𝑥⊤)
42, 3bitr2i 279 1 (¬ ∃𝑥⊤ ↔ ∀𝑥⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wal 1536  wtru 1539  wfal 1550  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 210  df-fal 1551  df-ex 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator