MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  empty Structured version   Visualization version   GIF version

Theorem empty 1905
Description: Two characterizations of the empty domain. (Contributed by Gérard Lang, 5-Feb-2024.)
Assertion
Ref Expression
empty (¬ ∃𝑥⊤ ↔ ∀𝑥⊥)

Proof of Theorem empty
StepHypRef Expression
1 df-fal 1550 . . 3 (⊥ ↔ ¬ ⊤)
21albii 1817 . 2 (∀𝑥⊥ ↔ ∀𝑥 ¬ ⊤)
3 alnex 1779 . 2 (∀𝑥 ¬ ⊤ ↔ ¬ ∃𝑥⊤)
42, 3bitr2i 276 1 (¬ ∃𝑥⊤ ↔ ∀𝑥⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535  wtru 1538  wfal 1549  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-fal 1550  df-ex 1778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator