Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > empty | Structured version Visualization version GIF version |
Description: Two characterizations of the empty domain. (Contributed by Gérard Lang, 5-Feb-2024.) |
Ref | Expression |
---|---|
empty | ⊢ (¬ ∃𝑥⊤ ↔ ∀𝑥⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fal 1552 | . . 3 ⊢ (⊥ ↔ ¬ ⊤) | |
2 | 1 | albii 1823 | . 2 ⊢ (∀𝑥⊥ ↔ ∀𝑥 ¬ ⊤) |
3 | alnex 1785 | . 2 ⊢ (∀𝑥 ¬ ⊤ ↔ ¬ ∃𝑥⊤) | |
4 | 2, 3 | bitr2i 275 | 1 ⊢ (¬ ∃𝑥⊤ ↔ ∀𝑥⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ⊤wtru 1540 ⊥wfal 1551 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-fal 1552 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |