Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr2i | Structured version Visualization version GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr2i | ⊢ (𝜒 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 1, 2 | bitri 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3 | bicomi 227 | 1 ⊢ (𝜒 ↔ 𝜑) |
Copyright terms: Public domain | W3C validator |