MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf3or Structured version   Visualization version   GIF version

Theorem nf3or 1913
Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, then it is not free in (𝜑𝜓𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1 𝑥𝜑
nf.2 𝑥𝜓
nf.3 𝑥𝜒
Assertion
Ref Expression
nf3or 𝑥(𝜑𝜓𝜒)

Proof of Theorem nf3or
StepHypRef Expression
1 df-3or 1090 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
2 nf.1 . . . 4 𝑥𝜑
3 nf.2 . . . 4 𝑥𝜓
42, 3nfor 1912 . . 3 𝑥(𝜑𝜓)
5 nf.3 . . 3 𝑥𝜒
64, 5nfor 1912 . 2 𝑥((𝜑𝜓) ∨ 𝜒)
71, 6nfxfr 1860 1 𝑥(𝜑𝜓𝜒)
Colors of variables: wff setvar class
Syntax hints:  wo 847  w3o 1088  wnf 1791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-ex 1788  df-nf 1792
This theorem is referenced by:  nfso  5474
  Copyright terms: Public domain W3C validator