| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf3or | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, then it is not free in (𝜑 ∨ 𝜓 ∨ 𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf.1 | ⊢ Ⅎ𝑥𝜑 |
| nf.2 | ⊢ Ⅎ𝑥𝜓 |
| nf.3 | ⊢ Ⅎ𝑥𝜒 |
| Ref | Expression |
|---|---|
| nf3or | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓 ∨ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1088 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | nf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfor 1904 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| 5 | nf.3 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 6 | 4, 5 | nfor 1904 | . 2 ⊢ Ⅎ𝑥((𝜑 ∨ 𝜓) ∨ 𝜒) |
| 7 | 1, 6 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓 ∨ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 848 ∨ w3o 1086 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfso 5599 |
| Copyright terms: Public domain | W3C validator |