MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq2tri Structured version   Visualization version   GIF version

Theorem eq2tri 2800
Description: A compound transitive inference for class equality. (Contributed by NM, 22-Jan-2004.)
Hypotheses
Ref Expression
eq2tri.1 (𝐴 = 𝐶𝐷 = 𝐹)
eq2tri.2 (𝐵 = 𝐷𝐶 = 𝐺)
Assertion
Ref Expression
eq2tri ((𝐴 = 𝐶𝐵 = 𝐹) ↔ (𝐵 = 𝐷𝐴 = 𝐺))

Proof of Theorem eq2tri
StepHypRef Expression
1 ancom 462 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (𝐵 = 𝐷𝐴 = 𝐶))
2 eq2tri.1 . . . 4 (𝐴 = 𝐶𝐷 = 𝐹)
32eqeq2d 2744 . . 3 (𝐴 = 𝐶 → (𝐵 = 𝐷𝐵 = 𝐹))
43pm5.32i 576 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐹))
5 eq2tri.2 . . . 4 (𝐵 = 𝐷𝐶 = 𝐺)
65eqeq2d 2744 . . 3 (𝐵 = 𝐷 → (𝐴 = 𝐶𝐴 = 𝐺))
76pm5.32i 576 . 2 ((𝐵 = 𝐷𝐴 = 𝐶) ↔ (𝐵 = 𝐷𝐴 = 𝐺))
81, 4, 73bitr3i 301 1 ((𝐴 = 𝐶𝐵 = 𝐹) ↔ (𝐵 = 𝐷𝐴 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725
This theorem is referenced by:  xpassen  9063
  Copyright terms: Public domain W3C validator