Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeq2d | Structured version Visualization version GIF version |
Description: Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) Allow shortening of eqeq2 2748. (Revised by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
eqeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eqeq2d | ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq1d 2738 | . 2 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) |
3 | eqcom 2743 | . 2 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
4 | eqcom 2743 | . 2 ⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐵)) |
Copyright terms: Public domain | W3C validator |