Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbi | Structured version Visualization version GIF version |
Description: Equivalent formulas define equal class abstractions, and conversely. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-8 2108 and df-clel 2816 (by avoiding use of cleqh 2862). (Revised by BJ, 23-Jun-2019.) |
Ref | Expression |
---|---|
abbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) | |
2 | nfsab1 2723 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
3 | nfsab1 2723 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜓} | |
4 | 2, 3 | nfbi 1906 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) |
5 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦(𝜑 ↔ 𝜓) | |
6 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
7 | sbequ12r 2245 | . . . . 5 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
8 | 6, 7 | bitrid 282 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
9 | df-clab 2716 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
10 | sbequ12r 2245 | . . . . 5 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜓 ↔ 𝜓)) | |
11 | 9, 10 | bitrid 282 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓)) |
12 | 8, 11 | bibi12d 346 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 ↔ 𝜓))) |
13 | 4, 5, 12 | cbvalv1 2338 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
14 | 1, 13 | bitr2i 275 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 [wsb 2067 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 |
This theorem is referenced by: nabbi 3047 rabbi 3314 ab0 4308 absn 4579 karden 9663 elnev 42037 csbingVD 42485 csbsngVD 42494 csbxpgVD 42495 csbrngVD 42497 csbunigVD 42499 csbfv12gALTVD 42500 |
Copyright terms: Public domain | W3C validator |