| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abbi | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal class abstractions (closed form). This is the backward implication of abbib 2798, proved from fewer axioms, and hence is independently named. (Contributed by BJ and WL and SN, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| abbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbbi 2074 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | |
| 2 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 5 | 4 | eqrdv 2727 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 |
| This theorem is referenced by: abbidv 2795 abbii 2796 abbid 2797 eqab 2866 sbcbi2 3812 iuneq12df 4982 axrep6g 5245 iotabi 6477 uniabio 6478 iotaval 6482 iotanul 6489 iuneq12daf 32485 bj-abv 36894 bj-cleq 36950 abbi1sn 42211 iotain 44406 |
| Copyright terms: Public domain | W3C validator |