| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abbi | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal class abstractions (closed form). This is the backward implication of abbib 2803, proved from fewer axioms, and hence is independently named. (Contributed by BJ and WL and SN, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| abbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbbi 2072 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | |
| 2 | df-clab 2713 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-clab 2713 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 5 | 4 | eqrdv 2732 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 [wsb 2063 ∈ wcel 2107 {cab 2712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 |
| This theorem is referenced by: abbidv 2800 abbii 2801 abbid 2802 eqab 2872 sbcbi2 3829 iuneq12df 4998 axrep6g 5270 iotabi 6507 uniabio 6508 iotaval 6512 iotanul 6519 iuneq12daf 32505 bj-abv 36882 bj-cleq 36938 abbi1sn 42237 iotain 44408 |
| Copyright terms: Public domain | W3C validator |