![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbi | Structured version Visualization version GIF version |
Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 16-Nov-2019.) |
Ref | Expression |
---|---|
abbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbab1 2814 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
2 | hbab1 2814 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜓}) | |
3 | 1, 2 | cleqh 2929 | . 2 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜓})) |
4 | abid 2813 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | abid 2813 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜓} ↔ 𝜓) | |
6 | 4, 5 | bibi12i 331 | . . 3 ⊢ ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ (𝜑 ↔ 𝜓)) |
7 | 6 | albii 1920 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑥(𝜑 ↔ 𝜓)) |
8 | 3, 7 | bitr2i 268 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1656 = wceq 1658 ∈ wcel 2166 {cab 2811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 |
This theorem is referenced by: abbii 2944 abbid 2945 nabbi 3101 rabbi 3331 sbcbi2 3711 absn 4415 iuneq12df 4764 iotabi 6095 uniabio 6096 iotanul 6101 karden 9035 iuneq12daf 29921 bj-cleq 33471 abeq12 34504 elnev 39478 csbingVD 39938 csbsngVD 39947 csbxpgVD 39948 csbrngVD 39950 csbunigVD 39952 csbfv12gALTVD 39953 |
Copyright terms: Public domain | W3C validator |