MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi Structured version   Visualization version   GIF version

Theorem abbi 2810
Description: Equivalent formulas yield equal class abstractions (closed form). This is the backward implication of abbib 2814, proved from fewer axioms, and hence is independently named. (Contributed by BJ and WL and SN, 20-Aug-2023.)
Assertion
Ref Expression
abbi (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem abbi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spsbbi 2073 . . 3 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
2 df-clab 2718 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
3 df-clab 2718 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
41, 2, 33bitr4g 314 . 2 (∀𝑥(𝜑𝜓) → (𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
54eqrdv 2738 1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  [wsb 2064  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732
This theorem is referenced by:  abbidv  2811  abbii  2812  abbid  2813  eqab  2883  sbcbi2  3867  iuneq12df  5041  axrep6g  5311  iotabi  6539  uniabio  6540  iotaval  6544  iotanul  6551  iuneq12daf  32579  bj-abv  36872  bj-cleq  36928  abbi1sn  42216  iotain  44386
  Copyright terms: Public domain W3C validator