| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abbi | Structured version Visualization version GIF version | ||
| Description: Equivalent formulas yield equal class abstractions (closed form). This is the backward implication of abbib 2800, proved from fewer axioms, and hence is independently named. (Contributed by BJ and WL and SN, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| abbi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbbi 2076 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) | |
| 2 | df-clab 2710 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | df-clab 2710 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 5 | 4 | eqrdv 2729 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 [wsb 2067 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 |
| This theorem is referenced by: abbidv 2797 abbii 2798 abbid 2799 eqab 2869 sbcbi2 3795 iuneq12df 4966 axrep6g 5226 iotabi 6450 uniabio 6451 iotaval 6455 iotanul 6461 iuneq12daf 32536 bj-abv 36950 bj-cleq 37006 abbi1sn 42326 iotain 44520 |
| Copyright terms: Public domain | W3C validator |