Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi Structured version   Visualization version   GIF version

Theorem abbi 2889
 Description: Equivalent formulas define equal class abstractions, and conversely. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-8 2116 and df-clel 2894 (by avoiding use of cleqh 2937). (Revised by BJ, 23-Jun-2019.)
Assertion
Ref Expression
abbi (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem abbi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2816 . 2 ({𝑥𝜑} = {𝑥𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
2 nfsab1 2809 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
3 nfsab1 2809 . . . 4 𝑥 𝑦 ∈ {𝑥𝜓}
42, 3nfbi 1904 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓})
5 nfv 1915 . . 3 𝑦(𝜑𝜓)
6 df-clab 2801 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
7 sbequ12r 2255 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
86, 7syl5bb 286 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
9 df-clab 2801 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
10 sbequ12r 2255 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜓𝜓))
119, 10syl5bb 286 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜓} ↔ 𝜓))
128, 11bibi12d 349 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ (𝜑𝜓)))
134, 5, 12cbvalv1 2362 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}) ↔ ∀𝑥(𝜑𝜓))
141, 13bitr2i 279 1 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209  ∀wal 1536   = wceq 1538  [wsb 2069   ∈ wcel 2114  {cab 2800 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815 This theorem is referenced by:  nabbi  3113  rabbi  3364  absn  4557  karden  9312  elnev  41076  csbingVD  41524  csbsngVD  41533  csbxpgVD  41534  csbrngVD  41536  csbunigVD  41538  csbfv12gALTVD  41539
 Copyright terms: Public domain W3C validator