MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi Structured version   Visualization version   GIF version

Theorem abbi 2800
Description: Equivalent formulas yield equal class abstractions (closed form). This is the backward implication of abbib 2804, proved from fewer axioms, and hence is independently named. (Contributed by BJ and WL and SN, 20-Aug-2023.)
Assertion
Ref Expression
abbi (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem abbi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spsbbi 2076 . . 3 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
2 df-clab 2710 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
3 df-clab 2710 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
41, 2, 33bitr4g 313 . 2 (∀𝑥(𝜑𝜓) → (𝑦 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜓}))
54eqrdv 2730 1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  [wsb 2067  wcel 2106  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724
This theorem is referenced by:  abbidv  2801  abbii  2802  abbid  2803  eqab  2872  sbcbi2  3839  iuneq12df  5023  axrep6g  5293  iotabi  6509  uniabio  6510  iotaval  6514  iotanul  6521  iuneq12daf  31826  bj-abv  35878  bj-cleq  35935  abbi1sn  41132  iotain  43264
  Copyright terms: Public domain W3C validator