Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 276 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 274 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: an33rean 1481 xorass 1508 cbvaldvaw 2042 sbievw2 2101 sbco4lem 2276 sbco4lemOLD 2277 cbvexv1 2341 cbval2vOLD 2343 cbvex 2399 sbco2d 2516 sbcom 2518 sb7f 2530 eq2tri 2806 clelsb2 2867 clelsb1fw 2910 clelsb1f 2911 cbvraldva2 3381 cbvrexdva2 3382 ceqsralt 3453 gencbvex 3478 gencbval 3480 ceqsrexbv 3579 euind 3654 reuind 3683 sbccomlem 3799 sbccom 3800 csbcom 4348 difcom 4416 eqsn 4759 uniintsn 4915 disjxun 5068 reusv2lem4 5319 exss 5372 opab0 5460 opelinxp 5657 eqbrriv 5690 dm0rn0 5823 elidinxp 5940 qfto 6015 rninxp 6071 coeq0 6148 fununi 6493 dffv2 6845 fndmin 6904 fnprb 7066 fntpb 7067 dfoprab2 7311 dfer2 8457 eceqoveq 8569 euen1 8770 xpsnen 8796 xpassen 8806 marypha2lem3 9126 rankuni 9552 card1 9657 alephislim 9770 dfacacn 9828 kmlem4 9840 ac6num 10166 zorn2lem4 10186 mappsrpr 10795 sqeqori 13858 trclublem 14634 fprodle 15634 vdwmc2 16608 txflf 23065 metustid 23616 caucfil 24352 ovolgelb 24549 dfcgra2 27095 axcontlem5 27239 frgr3v 28540 nmoubi 29035 hvsubaddi 29329 hlimeui 29503 omlsilem 29665 pjoml3i 29849 hodsi 30038 nmopub 30171 nmfnleub 30188 nmopcoadj0i 30366 pjin3i 30457 or3dir 30712 ralcom4f 30719 rexcom4f 30720 uniinn0 30791 ordtconnlem1 31776 bnj62 32599 bnj610 32627 bnj1143 32670 bnj1533 32732 bnj543 32773 bnj545 32775 bnj594 32792 cusgracyclt3v 33018 ceqsralv2 33572 xpab 33579 brsuccf 34170 brfullfun 34177 filnetlem4 34497 icorempo 35449 poimirlem13 35717 poimirlem14 35718 poimirlem21 35725 poimirlem22 35726 poimir 35737 sbccom2lem 36209 alrmomorn 36417 dfeldisj5 36759 isltrn2N 38061 moxfr 40430 ifporcor 40967 ifpancor 40969 ifpbicor 40980 ifpnorcor 40985 ifpnancor 40986 ifpororb 41010 relexp0eq 41198 hashnzfzclim 41829 pm11.6 41899 sbc3or 42041 cbvexsv 42056 dfich2 44798 ichbi12i 44800 sprvalpwn0 44823 copisnmnd 45251 |
Copyright terms: Public domain | W3C validator |