![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 277 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 275 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: an33rean 1482 xorass 1511 cbvaldvaw 2034 sbievw2 2095 sbco4lemOLD 2171 sbco4lemOLDOLD 2276 cbvexv1 2342 cbvex 2401 sbco2d 2514 sbcom 2516 sb7f 2527 eq2tri 2801 clelsb2OLD 2867 clelsb1fw 2906 clelsb1f 2907 cbvraldva 3236 rexcom 3287 cbvrexfw 3302 cbvraldva2 3345 cbvrexdva2OLD 3347 sbralie 3355 ceqsralt 3513 gencbvex 3540 gencbval 3542 ceqsrexbv 3655 ceqsralbv 3656 euind 3732 reuind 3761 sbccomlem 3877 sbccomlemOLD 3878 sbccom 3879 csbcom 4425 difcom 4494 eqsn 4833 uniintsn 4989 disjxun 5145 reusv2lem4 5406 exss 5473 opab0 5563 opelinxp 5767 eqbrriv 5803 dm0rn0 5937 elidinxp 6063 qfto 6143 rninxp 6200 coeq0 6276 fununi 6642 dffv2 7003 fndmin 7064 fnprb 7227 fntpb 7228 dfoprab2 7490 frpoins3xp3g 8164 dfer2 8744 eceqoveq 8860 euen1 9065 xpsnen 9093 xpassen 9104 marypha2lem3 9474 rankuni 9900 card1 10005 alephislim 10120 dfacacn 10179 kmlem4 10191 ac6num 10516 zorn2lem4 10536 mappsrpr 11145 sqeqori 14249 trclublem 15030 fprodle 16028 vdwmc2 17012 txflf 24029 metustid 24582 caucfil 25330 ovolgelb 25528 dfcgra2 28852 axcontlem5 28997 frgr3v 30303 nmoubi 30800 hvsubaddi 31094 hlimeui 31268 omlsilem 31430 pjoml3i 31614 hodsi 31803 nmopub 31936 nmfnleub 31953 nmopcoadj0i 32131 pjin3i 32222 an42ds 32478 or3dir 32488 ralcom4f 32495 rexcom4f 32496 uniinn0 32570 ordtconnlem1 33884 bnj62 34712 bnj610 34739 bnj1143 34782 bnj1533 34844 bnj543 34885 bnj545 34887 bnj594 34904 cusgracyclt3v 35140 xpab 35705 brsuccf 35922 brfullfun 35929 in-ax8 36206 filnetlem4 36363 icorempo 37333 poimirlem13 37619 poimirlem14 37620 poimirlem21 37627 poimirlem22 37628 poimir 37639 sbccom2lem 38110 alrmomorn 38339 dfeldisj5 38702 mpet2 38821 isltrn2N 40102 moxfr 42679 ifporcor 43451 ifpancor 43453 ifpbicor 43464 ifpnorcor 43469 ifpnancor 43470 ifpororb 43494 minregex 43523 relexp0eq 43690 hashnzfzclim 44317 pm11.6 44387 sbc3or 44529 cbvexsv 44544 dfich2 47382 ichbi12i 47384 sprvalpwn0 47407 copisnmnd 48012 |
Copyright terms: Public domain | W3C validator |