![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 276 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 274 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: an33rean 1483 xorass 1514 cbvaldvaw 2041 sbievw2 2099 sbco4lem 2272 sbco4lemOLD 2273 cbvexv1 2338 cbvex 2398 sbco2d 2511 sbcom 2513 sb7f 2524 eq2tri 2799 clelsb2OLD 2862 clelsb1fw 2907 clelsb1f 2908 cbvraldva 3236 rexcom 3287 cbvrexfw 3302 cbvraldva2 3344 cbvrexdva2OLD 3346 sbralie 3354 ceqsralt 3506 gencbvex 3535 gencbval 3537 ceqsrexbv 3643 ceqsralbv 3644 euind 3719 reuind 3748 sbccomlem 3863 sbccom 3864 csbcom 4416 difcom 4487 eqsn 4831 uniintsn 4990 disjxun 5145 reusv2lem4 5398 exss 5462 opab0 5553 opelinxp 5753 eqbrriv 5789 dm0rn0 5922 elidinxp 6041 qfto 6119 rninxp 6175 coeq0 6251 fununi 6620 dffv2 6983 fndmin 7043 fnprb 7206 fntpb 7207 dfoprab2 7463 frpoins3xp3g 8123 dfer2 8700 eceqoveq 8812 euen1 9022 xpsnen 9051 xpassen 9062 marypha2lem3 9428 rankuni 9854 card1 9959 alephislim 10074 dfacacn 10132 kmlem4 10144 ac6num 10470 zorn2lem4 10490 mappsrpr 11099 sqeqori 14174 trclublem 14938 fprodle 15936 vdwmc2 16908 txflf 23501 metustid 24054 caucfil 24791 ovolgelb 24988 dfcgra2 28070 axcontlem5 28215 frgr3v 29517 nmoubi 30012 hvsubaddi 30306 hlimeui 30480 omlsilem 30642 pjoml3i 30826 hodsi 31015 nmopub 31148 nmfnleub 31165 nmopcoadj0i 31343 pjin3i 31434 or3dir 31689 ralcom4f 31696 rexcom4f 31697 uniinn0 31769 ordtconnlem1 32892 bnj62 33719 bnj610 33746 bnj1143 33789 bnj1533 33851 bnj543 33892 bnj545 33894 bnj594 33911 cusgracyclt3v 34135 xpab 34683 brsuccf 34901 brfullfun 34908 filnetlem4 35254 icorempo 36220 poimirlem13 36489 poimirlem14 36490 poimirlem21 36497 poimirlem22 36498 poimir 36509 sbccom2lem 36980 alrmomorn 37215 dfeldisj5 37579 mpet2 37698 isltrn2N 38979 moxfr 41415 ifporcor 42198 ifpancor 42200 ifpbicor 42211 ifpnorcor 42216 ifpnancor 42217 ifpororb 42241 minregex 42270 relexp0eq 42437 hashnzfzclim 43066 pm11.6 43136 sbc3or 43278 cbvexsv 43293 dfich2 46112 ichbi12i 46114 sprvalpwn0 46137 copisnmnd 46565 |
Copyright terms: Public domain | W3C validator |