![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 278 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 276 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 |
This theorem is referenced by: xorass 1500 sbievw2 2076 sbco4lem 2251 cbvex 2375 cbvexvOLD 2379 cbval2OLD 2391 sbco2d 2510 sbcom 2512 sb7f 2523 sb7fALT 2572 eq2tri 2860 clelsb3vOLD 2913 clelsb3f 2955 clelsb3fOLD 2956 cbvraldva2 3409 cbvrexdva2 3410 cbvrexdva2OLD 3411 ralcom4OLD 3471 rexcom4OLD 3472 ceqsralt 3474 gencbvex 3495 gencbval 3497 ceqsrexbv 3591 euind 3654 reuind 3683 sbccomlem 3787 sbccom 3788 csbcom 4295 difcom 4354 eqsn 4675 uniintsn 4825 disjxun 4966 reusv2lem4 5200 exss 5254 opab0 5336 opelinxp 5524 eqbrriv 5557 dm0rn0 5686 elidinxp 5799 qfto 5864 rninxp 5919 coeq0 5990 fununi 6306 dffv2 6630 fndmin 6687 fnprb 6844 fntpb 6845 dfoprab2 7078 dfer2 8147 eceqoveq 8259 euen1 8434 xpsnen 8455 xpassen 8465 marypha2lem3 8754 rankuni 9145 card1 9250 alephislim 9362 dfacacn 9420 kmlem4 9432 ac6num 9754 zorn2lem4 9774 mappsrpr 10383 sqeqori 13430 trclublem 14193 fprodle 15187 vdwmc2 16148 txflf 22302 metustid 22851 caucfil 23573 ovolgelb 23768 dfcgra2 26302 axcontlem5 26441 frgr3v 27742 nmoubi 28236 hvsubaddi 28530 hlimeui 28704 omlsilem 28866 pjoml3i 29050 hodsi 29239 nmopub 29372 nmfnleub 29389 nmopcoadj0i 29567 pjin3i 29658 or3dir 29913 ralcom4f 29921 rexcom4f 29922 uniinn0 29987 ordtconnlem1 30780 bnj62 31603 bnj610 31631 bnj1143 31675 bnj1533 31736 bnj543 31777 bnj545 31779 bnj594 31796 cusgracyclt3v 32013 ceqsralv2 32566 brsuccf 33013 brfullfun 33020 filnetlem4 33340 bj-cbval2v 33674 icorempo 34184 poimirlem13 34457 poimirlem14 34458 poimirlem21 34465 poimirlem22 34466 poimir 34477 sbccom2lem 34955 alrmomorn 35165 dfeldisj5 35506 isltrn2N 36808 moxfr 38795 ifporcor 39333 ifpancor 39335 ifpbicor 39347 ifpnorcor 39352 ifpnancor 39353 ifpororb 39377 relexp0eq 39552 hashnzfzclim 40213 pm11.6 40283 sbc3or 40426 cbvexsv 40441 dfich2 43117 ichbi12i 43122 sprvalpwn0 43149 copisnmnd 43580 |
Copyright terms: Public domain | W3C validator |