| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 277 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: an33rean 1485 xorass 1515 cbvaldvaw 2038 sbievw2 2099 sbco4lemOLD 2175 cbvexv1 2340 cbvex 2397 sbco2d 2510 sbcom 2512 sb7f 2523 eq2tri 2791 clelsb1fw 2895 clelsb1f 2896 cbvraldva 3217 rexcom 3266 cbvrexfw 3279 cbvraldva2 3321 cbvrexdva2OLD 3323 sbralie 3326 sbralieOLD 3328 ceqsralt 3482 gencbvex 3507 gencbval 3509 ceqsrexbv 3622 ceqsralbv 3623 euind 3695 reuind 3724 sbccomlem 3832 sbccomlemOLD 3833 sbccom 3834 csbcom 4383 difcom 4452 eqsn 4793 uniintsn 4949 disjxun 5105 reusv2lem4 5356 exss 5423 opab0 5514 opelinxp 5718 eqbrriv 5754 dm0rn0 5888 elidinxp 6015 qfto 6094 rninxp 6152 coeq0 6228 fununi 6591 dffv2 6956 fndmin 7017 fnprb 7182 fntpb 7183 dfoprab2 7447 frpoins3xp3g 8120 dfer2 8672 eceqoveq 8795 euen1 8998 xpsnen 9025 xpassen 9035 marypha2lem3 9388 rankuni 9816 card1 9921 alephislim 10036 dfacacn 10095 kmlem4 10107 ac6num 10432 zorn2lem4 10452 mappsrpr 11061 sqeqori 14179 trclublem 14961 fprodle 15962 vdwmc2 16950 txflf 23893 metustid 24442 caucfil 25183 ovolgelb 25381 dfcgra2 28757 axcontlem5 28895 frgr3v 30204 nmoubi 30701 hvsubaddi 30995 hlimeui 31169 omlsilem 31331 pjoml3i 31515 hodsi 31704 nmopub 31837 nmfnleub 31854 nmopcoadj0i 32032 pjin3i 32123 an42ds 32379 or3dir 32389 ralcom4f 32396 rexcom4f 32397 uniinn0 32479 ordtconnlem1 33914 bnj62 34710 bnj610 34737 bnj1143 34780 bnj1533 34842 bnj543 34883 bnj545 34885 bnj594 34902 cusgracyclt3v 35143 xpab 35713 brsuccf 35929 brfullfun 35936 in-ax8 36212 filnetlem4 36369 icorempo 37339 poimirlem13 37627 poimirlem14 37628 poimirlem21 37635 poimirlem22 37636 poimir 37647 sbccom2lem 38118 alrmomorn 38340 qseq 38640 dfeldisj5 38713 mpet2 38832 isltrn2N 40114 moxfr 42680 ifporcor 43451 ifpancor 43453 ifpbicor 43464 ifpnorcor 43469 ifpnancor 43470 ifpororb 43494 minregex 43523 relexp0eq 43690 hashnzfzclim 44311 pm11.6 44381 sbc3or 44522 cbvexsv 44537 dfich2 47459 ichbi12i 47461 sprvalpwn0 47484 copisnmnd 48157 |
| Copyright terms: Public domain | W3C validator |