| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 277 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: an33rean 1485 an42ds 1491 xorass 1516 cbvaldvaw 2039 sbievw2 2103 sbco4lemOLD 2179 cbvexv1 2344 cbvex 2401 sbco2d 2514 sbcom 2516 sb7f 2527 eq2tri 2795 clelsb1fw 2899 clelsb1f 2900 cbvraldva 3213 rexcom 3262 cbvrexfw 3274 cbvraldva2 3315 sbralie 3319 sbralieOLD 3321 ceqsralt 3472 gencbvex 3496 gencbval 3498 ceqsrexbv 3607 ceqsralbv 3608 euind 3679 reuind 3708 sbccomlem 3816 sbccomlemOLD 3817 sbccom 3818 csbcom 4369 difcom 4438 eqsn 4782 uniintsn 4937 disjxun 5093 reusv2lem4 5343 exss 5408 opab0 5499 opelinxp 5701 eqbrriv 5737 dm0rn0 5870 dm0rn0OLD 5871 elidinxp 5999 qfto 6074 rninxp 6133 coeq0 6210 fununi 6563 dffv2 6925 fndmin 6986 fnprb 7150 fntpb 7151 dfoprab2 7412 frpoins3xp3g 8079 dfer2 8631 eceqoveq 8754 euen1 8958 xpsnen 8983 xpassen 8993 marypha2lem3 9330 rankuni 9765 card1 9870 alephislim 9983 dfacacn 10042 kmlem4 10054 ac6num 10379 zorn2lem4 10399 mappsrpr 11008 sqeqori 14125 trclublem 14906 fprodle 15907 vdwmc2 16895 txflf 23924 metustid 24472 caucfil 25213 ovolgelb 25411 dfcgra2 28811 axcontlem5 28950 frgr3v 30259 nmoubi 30756 hvsubaddi 31050 hlimeui 31224 omlsilem 31386 pjoml3i 31570 hodsi 31759 nmopub 31892 nmfnleub 31909 nmopcoadj0i 32087 pjin3i 32178 or3dir 32443 ralcom4f 32450 rexcom4f 32451 uniinn0 32534 extdgfialglem1 33728 ordtconnlem1 33960 bnj62 34755 bnj610 34782 bnj1143 34825 bnj1533 34887 bnj543 34928 bnj545 34930 bnj594 34947 cusgracyclt3v 35223 xpab 35793 lemsuccf 36006 brfullfun 36015 in-ax8 36291 filnetlem4 36448 icorempo 37418 poimirlem13 37696 poimirlem14 37697 poimirlem21 37704 poimirlem22 37705 poimir 37716 sbccom2lem 38187 alrmomorn 38413 qseq 38769 dfeldisj5 38842 mpet2 38961 isltrn2N 40242 moxfr 42812 ifporcor 43582 ifpancor 43584 ifpbicor 43595 ifpnorcor 43600 ifpnancor 43601 ifpororb 43625 minregex 43654 relexp0eq 43821 hashnzfzclim 44442 pm11.6 44512 sbc3or 44652 cbvexsv 44667 dfich2 47585 ichbi12i 47587 sprvalpwn0 47610 copisnmnd 48296 |
| Copyright terms: Public domain | W3C validator |