| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 277 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: an33rean 1485 xorass 1515 cbvaldvaw 2037 sbievw2 2098 sbco4lemOLD 2174 cbvexv1 2343 cbvex 2403 sbco2d 2516 sbcom 2518 sb7f 2529 eq2tri 2797 clelsb2OLD 2863 clelsb1fw 2902 clelsb1f 2903 cbvraldva 3222 rexcom 3271 cbvrexfw 3285 cbvraldva2 3327 cbvrexdva2OLD 3329 sbralie 3337 ceqsralt 3495 gencbvex 3520 gencbval 3522 ceqsrexbv 3635 ceqsralbv 3636 euind 3707 reuind 3736 sbccomlem 3844 sbccomlemOLD 3845 sbccom 3846 csbcom 4395 difcom 4464 eqsn 4805 uniintsn 4961 disjxun 5117 reusv2lem4 5371 exss 5438 opab0 5529 opelinxp 5734 eqbrriv 5770 dm0rn0 5904 elidinxp 6031 qfto 6110 rninxp 6168 coeq0 6244 fununi 6611 dffv2 6974 fndmin 7035 fnprb 7200 fntpb 7201 dfoprab2 7465 frpoins3xp3g 8140 dfer2 8720 eceqoveq 8836 euen1 9041 xpsnen 9069 xpassen 9080 marypha2lem3 9449 rankuni 9877 card1 9982 alephislim 10097 dfacacn 10156 kmlem4 10168 ac6num 10493 zorn2lem4 10513 mappsrpr 11122 sqeqori 14232 trclublem 15014 fprodle 16012 vdwmc2 16999 txflf 23944 metustid 24493 caucfil 25235 ovolgelb 25433 dfcgra2 28809 axcontlem5 28947 frgr3v 30256 nmoubi 30753 hvsubaddi 31047 hlimeui 31221 omlsilem 31383 pjoml3i 31567 hodsi 31756 nmopub 31889 nmfnleub 31906 nmopcoadj0i 32084 pjin3i 32175 an42ds 32431 or3dir 32441 ralcom4f 32448 rexcom4f 32449 uniinn0 32531 ordtconnlem1 33955 bnj62 34751 bnj610 34778 bnj1143 34821 bnj1533 34883 bnj543 34924 bnj545 34926 bnj594 34943 cusgracyclt3v 35178 xpab 35743 brsuccf 35959 brfullfun 35966 in-ax8 36242 filnetlem4 36399 icorempo 37369 poimirlem13 37657 poimirlem14 37658 poimirlem21 37665 poimirlem22 37666 poimir 37677 sbccom2lem 38148 alrmomorn 38376 dfeldisj5 38739 mpet2 38858 isltrn2N 40139 moxfr 42715 ifporcor 43486 ifpancor 43488 ifpbicor 43499 ifpnorcor 43504 ifpnancor 43505 ifpororb 43529 minregex 43558 relexp0eq 43725 hashnzfzclim 44346 pm11.6 44416 sbc3or 44557 cbvexsv 44572 dfich2 47472 ichbi12i 47474 sprvalpwn0 47497 copisnmnd 48144 |
| Copyright terms: Public domain | W3C validator |