![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 277 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 275 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: an33rean 1483 xorass 1512 cbvaldvaw 2037 sbievw2 2098 sbco4lemOLD 2175 sbco4lemOLDOLD 2282 cbvexv1 2348 cbvex 2407 sbco2d 2520 sbcom 2522 sb7f 2533 eq2tri 2807 clelsb2OLD 2873 clelsb1fw 2912 clelsb1f 2913 cbvraldva 3245 rexcom 3296 cbvrexfw 3311 cbvraldva2 3356 cbvrexdva2OLD 3358 sbralie 3366 ceqsralt 3524 gencbvex 3553 gencbval 3555 ceqsrexbv 3669 ceqsralbv 3670 euind 3746 reuind 3775 sbccomlem 3891 sbccomlemOLD 3892 sbccom 3893 csbcom 4443 difcom 4512 eqsn 4854 uniintsn 5009 disjxun 5164 reusv2lem4 5419 exss 5483 opab0 5573 opelinxp 5779 eqbrriv 5815 dm0rn0 5949 elidinxp 6073 qfto 6153 rninxp 6210 coeq0 6286 fununi 6653 dffv2 7017 fndmin 7078 fnprb 7245 fntpb 7246 dfoprab2 7508 frpoins3xp3g 8182 dfer2 8764 eceqoveq 8880 euen1 9091 xpsnen 9121 xpassen 9132 marypha2lem3 9506 rankuni 9932 card1 10037 alephislim 10152 dfacacn 10211 kmlem4 10223 ac6num 10548 zorn2lem4 10568 mappsrpr 11177 sqeqori 14263 trclublem 15044 fprodle 16044 vdwmc2 17026 txflf 24035 metustid 24588 caucfil 25336 ovolgelb 25534 dfcgra2 28856 axcontlem5 29001 frgr3v 30307 nmoubi 30804 hvsubaddi 31098 hlimeui 31272 omlsilem 31434 pjoml3i 31618 hodsi 31807 nmopub 31940 nmfnleub 31957 nmopcoadj0i 32135 pjin3i 32226 an42ds 32479 or3dir 32489 ralcom4f 32496 rexcom4f 32497 uniinn0 32573 ordtconnlem1 33870 bnj62 34696 bnj610 34723 bnj1143 34766 bnj1533 34828 bnj543 34869 bnj545 34871 bnj594 34888 cusgracyclt3v 35124 xpab 35688 brsuccf 35905 brfullfun 35912 in-ax8 36190 filnetlem4 36347 icorempo 37317 poimirlem13 37593 poimirlem14 37594 poimirlem21 37601 poimirlem22 37602 poimir 37613 sbccom2lem 38084 alrmomorn 38314 dfeldisj5 38677 mpet2 38796 isltrn2N 40077 moxfr 42648 ifporcor 43424 ifpancor 43426 ifpbicor 43437 ifpnorcor 43442 ifpnancor 43443 ifpororb 43467 minregex 43496 relexp0eq 43663 hashnzfzclim 44291 pm11.6 44361 sbc3or 44503 cbvexsv 44518 dfich2 47332 ichbi12i 47334 sprvalpwn0 47357 copisnmnd 47892 |
Copyright terms: Public domain | W3C validator |