Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 276 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 274 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: an33rean 1482 xorass 1511 cbvaldvaw 2042 sbievw2 2100 sbco4lem 2274 sbco4lemOLD 2275 cbvexv1 2340 cbval2vOLD 2342 cbvex 2400 sbco2d 2517 sbcom 2519 sb7f 2531 eq2tri 2806 clelsb2OLD 2869 clelsb1fw 2912 clelsb1f 2913 rexcom 3235 cbvrexfw 3371 cbvraldva2 3393 cbvrexdva2 3394 ceqsralt 3464 gencbvex 3489 gencbval 3491 ceqsrexbv 3587 euind 3660 reuind 3689 sbccomlem 3804 sbccom 3805 csbcom 4352 difcom 4420 eqsn 4763 uniintsn 4919 disjxun 5073 reusv2lem4 5325 exss 5379 opab0 5468 opelinxp 5667 eqbrriv 5703 dm0rn0 5837 elidinxp 5954 qfto 6031 rninxp 6087 coeq0 6163 fununi 6516 dffv2 6872 fndmin 6931 fnprb 7093 fntpb 7094 dfoprab2 7342 dfer2 8508 eceqoveq 8620 euen1 8825 xpsnen 8851 xpassen 8862 marypha2lem3 9205 rankuni 9630 card1 9735 alephislim 9848 dfacacn 9906 kmlem4 9918 ac6num 10244 zorn2lem4 10264 mappsrpr 10873 sqeqori 13939 trclublem 14715 fprodle 15715 vdwmc2 16689 txflf 23166 metustid 23719 caucfil 24456 ovolgelb 24653 dfcgra2 27200 axcontlem5 27345 frgr3v 28648 nmoubi 29143 hvsubaddi 29437 hlimeui 29611 omlsilem 29773 pjoml3i 29957 hodsi 30146 nmopub 30279 nmfnleub 30296 nmopcoadj0i 30474 pjin3i 30565 or3dir 30820 ralcom4f 30827 rexcom4f 30828 uniinn0 30899 ordtconnlem1 31883 bnj62 32708 bnj610 32736 bnj1143 32779 bnj1533 32841 bnj543 32882 bnj545 32884 bnj594 32901 cusgracyclt3v 33127 ceqsralv2 33679 xpab 33686 brsuccf 34252 brfullfun 34259 filnetlem4 34579 icorempo 35531 poimirlem13 35799 poimirlem14 35800 poimirlem21 35807 poimirlem22 35808 poimir 35819 sbccom2lem 36291 alrmomorn 36497 dfeldisj5 36839 isltrn2N 38141 moxfr 40521 ifporcor 41076 ifpancor 41078 ifpbicor 41089 ifpnorcor 41094 ifpnancor 41095 ifpororb 41119 minregex 41148 relexp0eq 41316 hashnzfzclim 41947 pm11.6 42017 sbc3or 42159 cbvexsv 42174 dfich2 44921 ichbi12i 44923 sprvalpwn0 44946 copisnmnd 45374 |
Copyright terms: Public domain | W3C validator |