| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 277 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: an33rean 1485 xorass 1515 cbvaldvaw 2038 sbievw2 2099 sbco4lemOLD 2175 cbvexv1 2340 cbvex 2397 sbco2d 2510 sbcom 2512 sb7f 2523 eq2tri 2791 clelsb1fw 2895 clelsb1f 2896 cbvraldva 3209 rexcom 3258 cbvrexfw 3271 cbvraldva2 3312 cbvrexdva2OLD 3314 sbralie 3317 sbralieOLD 3319 ceqsralt 3473 gencbvex 3498 gencbval 3500 ceqsrexbv 3613 ceqsralbv 3614 euind 3686 reuind 3715 sbccomlem 3823 sbccomlemOLD 3824 sbccom 3825 csbcom 4373 difcom 4442 eqsn 4783 uniintsn 4938 disjxun 5093 reusv2lem4 5343 exss 5410 opab0 5501 opelinxp 5703 eqbrriv 5738 dm0rn0 5871 elidinxp 5999 qfto 6074 rninxp 6132 coeq0 6208 fununi 6561 dffv2 6922 fndmin 6983 fnprb 7148 fntpb 7149 dfoprab2 7411 frpoins3xp3g 8081 dfer2 8633 eceqoveq 8756 euen1 8959 xpsnen 8985 xpassen 8995 marypha2lem3 9346 rankuni 9778 card1 9883 alephislim 9996 dfacacn 10055 kmlem4 10067 ac6num 10392 zorn2lem4 10412 mappsrpr 11021 sqeqori 14139 trclublem 14920 fprodle 15921 vdwmc2 16909 txflf 23909 metustid 24458 caucfil 25199 ovolgelb 25397 dfcgra2 28793 axcontlem5 28931 frgr3v 30237 nmoubi 30734 hvsubaddi 31028 hlimeui 31202 omlsilem 31364 pjoml3i 31548 hodsi 31737 nmopub 31870 nmfnleub 31887 nmopcoadj0i 32065 pjin3i 32156 an42ds 32412 or3dir 32422 ralcom4f 32429 rexcom4f 32430 uniinn0 32512 ordtconnlem1 33893 bnj62 34689 bnj610 34716 bnj1143 34759 bnj1533 34821 bnj543 34862 bnj545 34864 bnj594 34881 cusgracyclt3v 35131 xpab 35701 brsuccf 35917 brfullfun 35924 in-ax8 36200 filnetlem4 36357 icorempo 37327 poimirlem13 37615 poimirlem14 37616 poimirlem21 37623 poimirlem22 37624 poimir 37635 sbccom2lem 38106 alrmomorn 38328 qseq 38628 dfeldisj5 38701 mpet2 38820 isltrn2N 40102 moxfr 42668 ifporcor 43438 ifpancor 43440 ifpbicor 43451 ifpnorcor 43456 ifpnancor 43457 ifpororb 43481 minregex 43510 relexp0eq 43677 hashnzfzclim 44298 pm11.6 44368 sbc3or 44509 cbvexsv 44524 dfich2 47446 ichbi12i 47448 sprvalpwn0 47471 copisnmnd 48157 |
| Copyright terms: Public domain | W3C validator |