| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 277 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: an33rean 1485 xorass 1515 cbvaldvaw 2038 sbievw2 2099 sbco4lemOLD 2175 cbvexv1 2340 cbvex 2398 sbco2d 2511 sbcom 2513 sb7f 2524 eq2tri 2792 clelsb1fw 2896 clelsb1f 2897 cbvraldva 3218 rexcom 3267 cbvrexfw 3281 cbvraldva2 3323 cbvrexdva2OLD 3325 sbralie 3328 sbralieOLD 3330 ceqsralt 3485 gencbvex 3510 gencbval 3512 ceqsrexbv 3625 ceqsralbv 3626 euind 3698 reuind 3727 sbccomlem 3835 sbccomlemOLD 3836 sbccom 3837 csbcom 4386 difcom 4455 eqsn 4796 uniintsn 4952 disjxun 5108 reusv2lem4 5359 exss 5426 opab0 5517 opelinxp 5721 eqbrriv 5757 dm0rn0 5891 elidinxp 6018 qfto 6097 rninxp 6155 coeq0 6231 fununi 6594 dffv2 6959 fndmin 7020 fnprb 7185 fntpb 7186 dfoprab2 7450 frpoins3xp3g 8123 dfer2 8675 eceqoveq 8798 euen1 9001 xpsnen 9029 xpassen 9040 marypha2lem3 9395 rankuni 9823 card1 9928 alephislim 10043 dfacacn 10102 kmlem4 10114 ac6num 10439 zorn2lem4 10459 mappsrpr 11068 sqeqori 14186 trclublem 14968 fprodle 15969 vdwmc2 16957 txflf 23900 metustid 24449 caucfil 25190 ovolgelb 25388 dfcgra2 28764 axcontlem5 28902 frgr3v 30211 nmoubi 30708 hvsubaddi 31002 hlimeui 31176 omlsilem 31338 pjoml3i 31522 hodsi 31711 nmopub 31844 nmfnleub 31861 nmopcoadj0i 32039 pjin3i 32130 an42ds 32386 or3dir 32396 ralcom4f 32403 rexcom4f 32404 uniinn0 32486 ordtconnlem1 33921 bnj62 34717 bnj610 34744 bnj1143 34787 bnj1533 34849 bnj543 34890 bnj545 34892 bnj594 34909 cusgracyclt3v 35150 xpab 35720 brsuccf 35936 brfullfun 35943 in-ax8 36219 filnetlem4 36376 icorempo 37346 poimirlem13 37634 poimirlem14 37635 poimirlem21 37642 poimirlem22 37643 poimir 37654 sbccom2lem 38125 alrmomorn 38347 qseq 38647 dfeldisj5 38720 mpet2 38839 isltrn2N 40121 moxfr 42687 ifporcor 43458 ifpancor 43460 ifpbicor 43471 ifpnorcor 43476 ifpnancor 43477 ifpororb 43501 minregex 43530 relexp0eq 43697 hashnzfzclim 44318 pm11.6 44388 sbc3or 44529 cbvexsv 44544 dfich2 47463 ichbi12i 47465 sprvalpwn0 47488 copisnmnd 48161 |
| Copyright terms: Public domain | W3C validator |