| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3i | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 277 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: an33rean 1485 an42ds 1491 xorass 1516 cbvaldvaw 2039 sbievw2 2101 sbco4lemOLD 2177 cbvexv1 2342 cbvex 2399 sbco2d 2512 sbcom 2514 sb7f 2525 eq2tri 2793 clelsb1fw 2898 clelsb1f 2899 cbvraldva 3212 rexcom 3261 cbvrexfw 3273 cbvraldva2 3314 sbralie 3318 sbralieOLD 3320 ceqsralt 3471 gencbvex 3496 gencbval 3498 ceqsrexbv 3611 ceqsralbv 3612 euind 3683 reuind 3712 sbccomlem 3820 sbccomlemOLD 3821 sbccom 3822 csbcom 4370 difcom 4439 eqsn 4781 uniintsn 4935 disjxun 5089 reusv2lem4 5339 exss 5403 opab0 5494 opelinxp 5696 eqbrriv 5731 dm0rn0 5864 dm0rn0OLD 5865 elidinxp 5993 qfto 6068 rninxp 6126 coeq0 6203 fununi 6556 dffv2 6917 fndmin 6978 fnprb 7142 fntpb 7143 dfoprab2 7404 frpoins3xp3g 8071 dfer2 8623 eceqoveq 8746 euen1 8949 xpsnen 8974 xpassen 8984 marypha2lem3 9321 rankuni 9756 card1 9861 alephislim 9974 dfacacn 10033 kmlem4 10045 ac6num 10370 zorn2lem4 10390 mappsrpr 10999 sqeqori 14121 trclublem 14902 fprodle 15903 vdwmc2 16891 txflf 23922 metustid 24470 caucfil 25211 ovolgelb 25409 dfcgra2 28809 axcontlem5 28947 frgr3v 30253 nmoubi 30750 hvsubaddi 31044 hlimeui 31218 omlsilem 31380 pjoml3i 31564 hodsi 31753 nmopub 31886 nmfnleub 31903 nmopcoadj0i 32081 pjin3i 32172 or3dir 32437 ralcom4f 32444 rexcom4f 32445 uniinn0 32528 extdgfialglem1 33703 ordtconnlem1 33935 bnj62 34730 bnj610 34757 bnj1143 34800 bnj1533 34862 bnj543 34903 bnj545 34905 bnj594 34922 cusgracyclt3v 35198 xpab 35768 brsuccf 35981 brfullfun 35988 in-ax8 36264 filnetlem4 36421 icorempo 37391 poimirlem13 37679 poimirlem14 37680 poimirlem21 37687 poimirlem22 37688 poimir 37699 sbccom2lem 38170 alrmomorn 38392 qseq 38692 dfeldisj5 38765 mpet2 38884 isltrn2N 40165 moxfr 42731 ifporcor 43501 ifpancor 43503 ifpbicor 43514 ifpnorcor 43519 ifpnancor 43520 ifpororb 43544 minregex 43573 relexp0eq 43740 hashnzfzclim 44361 pm11.6 44431 sbc3or 44571 cbvexsv 44586 dfich2 47495 ichbi12i 47497 sprvalpwn0 47520 copisnmnd 48206 |
| Copyright terms: Public domain | W3C validator |